Current research projects

Image Certification of efficient air conditioning and ventilation systems through the new "indoor air quality seal" for non-residential buildings
Image Investigation according to DIN EN ISO 14903
Image Range of services laboratory analyses
Image Reducing the filling quantity
Image Behavior of multiphase cryogenic fluids
Image Swirl-free on the move...
Image Innovative cryogenic cooling system for the recondensation / liquefaction of technical gases up to 77 K
Image Non- invasive flow measurements
Image Air-water heat pumps
Image Measurement of insulated packaging
Image Ionocaloric cooling
Image Mass Spectrometer
Image Computational fluid dynamics CFD
Image Calibration of Low Temperature Sensors
Image Investigation of material-dependent parameters
Image Investigation of materials

You are here:   /  Home


Development of a Cryogenic Magnetic Air Separation Unit

Federal Ministry for Economic Affairs and Climate Action

02/2022-07/2024

Erik Neuber

+49-351-4081-5122

Oxygen Enrichment by Applied Cryogenic Magnetohydrodynamics

Nowadays, for oxygen enrichment from air, various commercial options are available, among other things, pressure swing adsorption, cryogenic rectification, and membranes. Although well-established, most of these methods do have a relative high specific energy demand for small-to-medium production rates (in this context: 0–100 TPD (tonnes per day) of oxygen) and relative high purities (at least 90 vol% of oxygen) [1].

To close this gap, ILK Dresden intends to develop and optimise an efficient cryogenic magnetic air separation unit that enables oxygen enrichment by means of OGMS (open-gradient magnetic separation). Motivated by provisional first-shot experiments, for a first setup, the following parameters are being targeted:

  • Operating pressure: 1–3 bar(a);
  • Degree of purity: 95 vol% oxygen;
  • Production rate: 5 standard l/min oxygen;
  • Specific energy demand: 160–180 kWh/t oxygen;
  • Required time for start-up: 30–60 min;
  • Continuous operation;
  • Less maintenance requirements than pressure swing adsorption;
  • Comparable space requirements as pressure swing adsorption.

Moreover, based on the experimental results, the scalability of the system for higher production rates of up to 100 TPD oxygen shall be analysed.

For this patented technology, ILK Dresden is looking for industrial partners that have interest in financial participation, specific applications, or further developments.

Granted Patent:

DE 10 2021 109 146 A1


Your Request

Further Projects

Image

Hybrid- Fluid for CO2-Sublimation Cycle

Cryogenic cooling by CO2 sublimation

Image

Energy efficiency consulting - cogeneration systems

How efficient is my refrigeration system?

Image

Cold meter

The fast way to refrigerating capacity

Image

Optimizing HVAC operation with machine learning

Intelligent control of HVAC systems – high comfort with low energy demand

Image

Industry 4.0 membrane heat and mass exchanger (i-MWÜ4.0)

Linking the entire life cycle of a multi-functional air handling unit