Current research projects

Image Investigation according to DIN EN ISO 14903
Image Ice Slurry Generation
Image Certification of efficient air conditioning and ventilation systems through the new "indoor air quality seal" for non-residential buildings
Image Thermal engines
Image Behavior of multiphase cryogenic fluids
Image Cool Up
Image Performance tests of refrigerant compressors
Image Reduction of primary noise sources of fans
Image Software for technical building equipment
Image CO₂ GAS HYDRATES FOR SUSTAINABLE ENERGY AND COOLING SOLUTIONS
Image Test rigs for refrigeration and heat pump technology
Image Low noise and non metallic liquid-helium cryostat
Image Thermostatic Expansion Valves
Image Innovative Manufacturing Technologies for Cryosorption Systems
Image Panel with indirect evaporative cooling via membrane
Image Calibration leak for the water bath leak test

You are here:   /  Home


Development of test methods and test rigs for stationary integrated refrigeration units

BMWi Euronorm Innokom

02/2017 – 07/2019

Andreas Peusch

+49-351-4081-5221

How efficient is my refrigeration unit?

The objective of the R&D project was the development of a test method for stationary integrated refrigeration units. The test method comprises different device variants, like ceiling mounted, wall mounted or split refrigeration units. The method provides reliable performance data and thus enables a manufacturer-independent efficiency comparison.

Measurements in the 3- or 4-chamber measurement setup were carried out using the calorimeter method with compensation of the ambient conditions. This enabled the measurements of devices with low cooling capacity (0.5 - 4 kW).

In the selected test setup (Figure 1), the cooling capacity is measured indirectly via an electrical power of the compensation heating. To determine the total cooling capacity, the heat input into the calorimeter room and, if necessary, internal loads (sensible and latent heat) have to be added together.

The test method comprises following features:

  • Suitable for low temperature devices (-20 °C) and normal temperature cooling (0 °C)
  • Measurement in the calorimeter room (3- or 4-zone concept)
  • Determination of heat input via enclosure surfaces before power measurement
  • Establishment of equilibrium conditions (settling phase) of the temperatures to be set (up to 24 h)
  • Measuring period up to 6 h with permissible tolerance band of 0.2 K

Conclusion:

  • Results were included in new test standard prEN 17432
  • Establishment of a uniform Europe-wide comparison criterion
  • Performance and efficiency data on a uniform basis leads to higher confidence and thus also to lower consumption costs

Your Request

Further Projects

Image

Tensile and compression testing

Determination of yield strength, tensile strength and elongation at break

Image

Investigation of material-dependent parameters

Investigation of the permeation behavior

Image

Cool Up

Upscaling Sustainable Cooling

Image

Breakthrough Sensor for Adsorption Filters (BelA)

Sensor system for detecting an imminent breakthrough in gas filtration

Image

Ionocaloric cooling

Ionocaloric solid-liquid phase cooling process