Image Reduction of primary noise sources of fans
Image Innovative cryogenic cooling system for the recondensation / liquefaction of technical gases up to 77 K
Image Filter Tests
Image Brine (water)-water heat pump
Image Measurements on ceiling mounted cooling systems
Image Electrical components in refrigeration circuits
Image Micro heat exchangers in refrigeration
Image Performance tests of refrigerant compressors
Image Test rigs for refrigeration and heat pump technology
Image Air-water heat pumps
Image Leak Detection and Tightness Test
Image Solar Cooling
Image Electrochemical decontamination of electrically conducting surfaces „EDeKo II“
Image Investigation of coolants
Image Refrigerants, lubricants and mixtures
Image High Capacity Pulse Tube Cooler

You are here:   /  Home


Innovative Manufacturing Technologies for Cryosorption Systems

Euronorm, R&D

Sandra Tippmann

+49-351-4081-614

Vacuum Pumps for UHV and XHV

A cryosorption system is defined as a vacuum pump that captures gas on cryogenic surfaces (gas-binding vacuum pump). Thus pressures lower than 5-12 mbar are obtainable (realisation of UHV - ultrahigh vacuum and XHV - extremely high vacuum). Cryosorption systems rely on very good heat transfer performance. This is currently being achieved with a complex, cost-intensive and risky manufacturing process. Therefore the aim of this project is to develop a new manufacturing technology that does not have this disadvantage.

 

For this purpose, thermodynamically important variables, such as sorption heat and heat transfer resistance were determined mathematically. A test sample was developed and constructed based on these results.

After completion of the design the test sample will be produced.

In the further course of the R&D project a test stand will be set up on which the test sample can be measured. These measurements will be checked and validated in a CFD simulation. With the help of the CFD model, various simulations for future cryosorption systems can be carried out. For example cooling times for different activated carbon masses or the thermal performance under different conditions for the cooling medium can be determined using this method.

Finally the sample production (functional sample) of a cryosorption system made of stainless steel with a precisely defined heat transfer behaviour takes place. The functional model is measured in relation to the cooling performance and pressure loss of the cooling medium and the results obtained will be included into the creation of a process instruction for manufacturing future cryosorption systems.


Your Request

Further Projects

Image

Investigation of materials

Investigations regarding the compatibility of materials with refrigerants, oils and heat transfer fluids

Image

Non- invasive flow measurements

PDPA - flow fields and particle sizes

Image

High temperature heat pump

Using waste heat from industrial processes

Image

Computational fluid dynamics CFD

Scientific analysis of flows


Contact

Institut für Luft- und Kältetechnik - Gemeinnützige Gesellschaft mbH
Bertolt-Brecht-Allee 20, 01309 Dresden


Secretary to the Management

+49-351-4081-520

+49-351-4081-525

Image ISO 9001
Bild Zuse Mitglied Bild SIG