Current research projects

Image Influenced melting point of water by magnetic field
Image Refrigerants, lubricants and mixtures
Image Pulse-Tube-Refrigerator with sealed compressor
Image Verification of storage suitability of cryo tubes
Image Thermal engines
Image Test procedures for electrical components
Image Certification of efficient air conditioning and ventilation systems through the new "indoor air quality seal" for non-residential buildings
Image Helium extraction from natural gas
Image Reducing the filling quantity
Image Brine (water)-water heat pump
Image Cryostats, Non-Metallic and Metallic
Image Performance tests of condensing units
Image Preformance measurements of heat exchangers
Image Innovative Manufacturing Technologies for Cryosorption Systems
Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr
Image Behavior of multiphase cryogenic fluids

You are here:   /  Home


Innovative small helium liquefier

EuroNorm GmbH (BMWi)

Dr. Erik Neuber

+49-351-4081-5122

Liquefaction rates from 10 to 15 l/h

The goal of the R & D project is to explore new innovative ways to develop the functional model of a "helium liquefier for the small liquefaction rate". The development of such a system should cover the still non-existent area of the market.

 

This liquefier should contain several innovations and technical solutions:

  • Development of a helium liquefaction system with a liquefaction rate of 10 - 15 liters per hour of liquid helium.
  • Development of an innovative pre-cooling stage, which works with a mixture of helium and refrigerants as working fluid.
  • Detailed investigation of an innovative helium cycle within the development of the helium small liquefier with the ability to operate in different operating regimes: helium liquefaction, cooling and temperature stabilization/control.
  • Operation of the condenser with a liquefaction rate that can be varied over a wide range - between 75% and 100%.

Currently, the functional design of the helium small liquefier is being set up. The figure shows a 3D model of the cold box, in which all heat exchangers and cold valves are mounted. In the upper part of the cold box, two prototypes of low flow helium turboexpanders are mounted. All external components, piping and condenser control system are located on the front of the cold box.


Your Request