Current research projects

Image Optimizing HVAC operation with machine learning
Image Certification of efficient air conditioning and ventilation systems through the new "indoor air quality seal" for non-residential buildings
Image Preformance measurements of heat exchangers
Image Low temperature – test facilities
Image Behavior of multiphase cryogenic fluids
Image Investigation according to DIN EN ISO 14903
Image Energy efficiency consulting - cogeneration systems
Image Panel with indirect evaporative cooling via membrane
Image ZeroHeatPump
Image Corrosion inhibitor for ammonia absorption systems
Image Calibration leak for the water bath leak test
Image Thermostatic Expansion Valves
Image Breakthrough Sensor for Adsorption Filters (BelA)
Image Development of test methods and test rigs for stationary integrated refrigeration units
Image Electrical components in refrigeration circuits
Image CO₂ GAS HYDRATES FOR SUSTAINABLE ENERGY AND COOLING SOLUTIONS

You are here:   /  Home


Intelligent innovative power supply for superconducting coils

Dr. Andreas Kade

+49-351-4081-5117

Compact, powerful power supply with 4-quadrant converter

The aim of the R&D project is the development of an intelligent innovative power supply as a 4-quadrant controller and energy storage device, which consists of a communicating system between quench protection and current flow control at the superconductor. The development shall be characterized by safety, compactness, accuracy, user friendliness, good price-performance ratio and modularity. The combination of cryogenic and warm electronics will provide significant advantages.
The functional model developed and constructed for this purpose has the following parameters and properties:

  • 4-quadrant power supply with ± 25 V and ± 14 kA
  • Constant voltage quench protection system
  • Cryogenic switch (cryogenic)
  • Energy storage system

The components for the energy storage system consists of individual cells with a capacity of 3000 F and a voltage of 2.7 V. 51 modules are connected in parallel, each with 10 individual cells, to form a capacitor bank. This results in a capacity of 15,300 F and a voltage of 25 V. A 3 kA, 30 V device serves as power supply, which has already been successfully tested on a cryogenic power supply.
In the next step, the configured capacitor modules for the energy storage and the boards of the 4-quadrant controller, see Figure 1, were combined in three switch cabinets, see Figure 2. The completed switch cabinet is shown in Figure 3. First results were presented at the 16th Cryogenics in October 2021.
 


Your Request

Further Projects

Image

Software for technical building equipment

Design cooling load and energetic annual simulation (VDI 2078, VDI 6007, VDI 6020)

Image

Measurements on ceiling mounted cooling systems

Comparative performance measurement

Image

Micro fluidic expansion valve

for increasing of the efficiency of small and compact cooling units

Image

Solar Cooling

Solar Cooling with Photovoltaic

Image

Hydrogen and methane testing field at the ILK

Simultaneously pressures up to 1,000 bar, temperatures down to –253°C