Current research projects

Image Multifunctional electronic modules for cryogenic applications
Image Practical training, diploma, master, bachelor
Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr
Image High Capacity Pulse Tube Cooler
Image Air-water heat pumps
Image Influenced melting point of water by magnetic field
Image Filter Tests
Image Micro heat exchangers in refrigeration
Image Development of a Cryogenic Magnetic Air Separation Unit
Image Measurements on ceiling mounted cooling systems
Image IO-Scan - Integral measuring optical scanning method
Image Humidifier System for High-Purity Gases
Image Low temperature – test facilities
Image Industry 4.0 membrane heat and mass exchanger (i-MWÜ4.0)
Image In-Situ-Swelling Behaviour of Polymer Materials in Flammable Fluids
Image Electrical components in refrigeration circuits

You are here:   /  Home


IO-Scan - Integral measuring optical scanning method

INNO-KOM

02/2022 - 07/2024

M.Sc. Rebekka Grüttner

+49-351-4081-5314

IO-Scan

Development of a photometric measurement method for determining the air exchange rate in indoor areas

Motivation

  • Cost-effective, real-time assessment of indoor air quality in the form of air exchange rates
  • Verify and optimise the effectiveness of ventilation systems in occupied areas
  • Ability to evaluate aerosol reduction through the interaction of window ventilation, building ventilation system and mobile room air cleaners

Project Objective

  • Self-calibrating measuring system
  • Deviation from previous trace gas measurements should be within 10%.
  • Real-time results can detect and evaluate the influence of changes in the ventilation system during the measurement process
  • Intended measurement depth in the room: 1 m to 50 m

Solution Approach

  • The introduction of mist aerosols into the room air influences the light transmittance to be measured.
  • Transmittance of an air-aerosol mixture and use of measured transmittance to determine air exchange rate
  • Integral real-time optical measurement over individual indoor distances

[Translate to EN:] Ergebnisse / Aktueller Stand

[Translate to EN:]

[Translate to EN:]

[Translate to EN:]


Your Request

Further Projects