Current research projects

Image Refrigerants, lubricants and mixtures
Image Innovative cryogenic cooling system for the recondensation / liquefaction of technical gases up to 77 K
Image Calibration leak for the water bath leak test
Image Software modules
Image Swirl-free on the move...
Image Characterisation of Superconductors in Hydrogen Atmosphere
Image Software for technical building equipment
Image Ice Slurry Generation
Image Corrosion inhibitor for ammonia absorption systems
Image Thermostatic Expansion Valves
Image High Capacity Pulse Tube Cooler
Image CFE-Test of Cooker Hoods
Image Performance tests of condensing units
Image 3D - Air flow sensor
Image Innovative Parahydrogen Generator Based on Magnets
Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr

You are here:   /  Home


Multifunctional electronic modules for cryogenic applications

Euronorm GmbH

Dr. Norbert Gust

+49-351-4081-5112

Electronic with less wiring effort - more than 100 sensors via one feedthrough

The aim of the R&D project was the development of multifunctional electronic modules that enable the operation of a large number and variety of sensors to be used for cryogenic applications.

Usually, cryogenic sensors are located in cryostats and all cables have to be decoupled via feedthroughs, which leads to an increased heat input. To avoid this, we have developed and implemented various multiplexers as a part of the project, which work well under cryogenic conditions, see Figure 1 (left). The multiplexers are designed for an operation with a 10-wire bus system with arbitrary expandability. The multiplexers were developed and optimized for minimum interference, maximum function and compactness.

Another major goal of the R&D project was the development of a universal measuring bridge for any sensors, see Figure 1 (right). As a result, different electronic multifunction modules and cold multiplexers were developed, realized and validated. These modules are characterized by the fact that any sensors can be connected by means of a universal circuit board design. The selection of the modules was modular, which is why special components were selected and tested depending on the requirements. Among the options are: Different references (resistance, voltage), amplification factors, active shielding, battery operation, displays (TFT, LCD), interfaces (RS485, USB), storage options (SD card), electrical isolation, interface to multiplexers, and type of housing.

During development, special attention was paid to electromagnetic compatibility and interference sensitivity during switching operations, such as in heater control. The accuracy is determined by reference resistors and voltages. In addition, the time response of the facial expressions was a key parameter of the development in order to ensure a fast and stable measurement.

Within the R&D project a software was programmed which is available as a universal platform for any configuration of modules. The modules can be in-house developments or commercially available products. Each controller supports a freely definable number of sensors, actuators, controllers and binary inputs and outputs. Each sensor, actuator and controller can represent any common physical quantity. These include temperature, pressure, level, voltage, current, resistance etc.

With our development of a universal temperature measuring bridge, any temperature sensors can be read out with high accuracy, see Figure 2.


Your Request

Further Projects

Image

Tensile and compression testing

Determination of yield strength, tensile strength and elongation at break

Image

Investigation of material-dependent parameters

Investigation of the permeation behavior

Image

Cool Up

Upscaling Sustainable Cooling

Image

Breakthrough Sensor for Adsorption Filters (BelA)

Sensor system for detecting an imminent breakthrough in gas filtration

Image

Ionocaloric cooling

Ionocaloric solid-liquid phase cooling process