Current research projects

Image Helium extraction from natural gas
Image Electrical components in refrigeration circuits
Image Practical training, diploma, master, bachelor
Image 3D - Air flow sensor
Image Intelligent innovative power supply for superconducting coils
Image Testzentrum PLWP at ILK Dresden
Image Innovative cryogenic cooling system for the recondensation / liquefaction of technical gases up to 77 K
Image Performance tests of condensing units
Image Air-flow test rig for fan characteristic measurement
Image Low Temperature Measuring Service
Image Reduction of primary noise sources of fans
Image Multifunctional electronic modules for cryogenic applications
Image High temperature heat pump
Image Certifiable connection types in cryogenics
Image Investigation of materials
Image Software for technical building equipment

You are here:   /  Home


Optimizing HVAC operation with machine learning

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in progress

Intelligent control of HVAC systems – high comfort with low energy demand

Motivation

During operation, the energy efficiency of many HVAC systems remains considerably below the value predicted when planning. One reason is that especially complex systems with multiple generators, storages and consumer locations frequently are not operated optimally.

Aim of the project

Development of a tool for optimizing the operation of HVAC systems which uses machine learning (ML) methods and data from the digital building model (Building Information Model, BIM):

  • Optimization goal: high energy efficiency with at the same time high comfort for users

  • Saving operating costs, energy and carbon dioxide emissions due to increased efficiency

  • Continuous autonomous improvement of the ML algorithm by learning from new measured data with auto-adaptive reaction to changing conditions (building, system, use, smart meter for real time billing of energy and media, etc.)

Approach

  • Reproduction of the real system’s thermal-energetic behaviour in the machine learning system, training with BIM data, measured data and a digital twin of the real system
  • Application of ML methods for load forecasting (weather, usage patterns)

  • Automatic classification of utilisation scenarios, fault detection

  • Integration of available tools for efficient simulation of indoor air flows and for calculating energy demands

  • Co-Validation of optimization tool, experimental studies and digital twin

Interested?

Please get in touch with us if you are interested in a cooperation: klima@ilkdresden.de

 


Your Request

Further Projects

Image

Development of a Cryogenic Magnetic Air Separation Unit

Oxygen Enrichment by Applied Cryogenic Magnetohydrodynamics

Image

Software for test rigs

Individual software for complex tests and evaluation

Image

Brine (water)-water heat pump

Test according DIN EN 14511 and 14825

Image

High temperature heat pump

Using waste heat from industrial processes

Image

Air-water heat pumps

Test according DIN EN 14511 and 14825