Current research projects

Image Investigation of material-dependent parameters
Image Filter Tests
Image Refrigerants, lubricants and mixtures
Image Thermostatic Expansion Valves
Image In-situ investigation concerning the swelling behaviour of polymer materials under elevated pressures and temperatures
Image Swirl-free on the move...
Image Innovative small helium liquefier
Image Innovative Parahydrogen Generator Based on Magnets
Image Ionocaloric cooling
Image Characterisation of Superconductors in Hydrogen Atmosphere
Image Intelligent innovative power supply for superconducting coils
Image Software modules
Image In-Situ-Swelling Behaviour of Polymer Materials in Flammable Fluids
Image Solar Cooling
Image Thermal engines
Image Electrochemical decontamination of electrically conducting surfaces „EDeKo II“

You are here:  Home /  Measurements and Tests


Development of test methods and test rigs for stationary integrated refrigeration units

BMWi Euronorm Innokom

02/2017 – 07/2019

Andreas Peusch

+49-351-4081-5221

How efficient is my refrigeration unit?

The objective of the R&D project was the development of a test method for stationary integrated refrigeration units. The test method comprises different device variants, like ceiling mounted, wall mounted or split refrigeration units. The method provides reliable performance data and thus enables a manufacturer-independent efficiency comparison.

Measurements in the 3- or 4-chamber measurement setup were carried out using the calorimeter method with compensation of the ambient conditions. This enabled the measurements of devices with low cooling capacity (0.5 - 4 kW).

In the selected test setup (Figure 1), the cooling capacity is measured indirectly via an electrical power of the compensation heating. To determine the total cooling capacity, the heat input into the calorimeter room and, if necessary, internal loads (sensible and latent heat) have to be added together.

The test method comprises following features:

  • Suitable for low temperature devices (-20 °C) and normal temperature cooling (0 °C)
  • Measurement in the calorimeter room (3- or 4-zone concept)
  • Determination of heat input via enclosure surfaces before power measurement
  • Establishment of equilibrium conditions (settling phase) of the temperatures to be set (up to 24 h)
  • Measuring period up to 6 h with permissible tolerance band of 0.2 K

Conclusion:

  • Results were included in new test standard prEN 17432
  • Establishment of a uniform Europe-wide comparison criterion
  • Performance and efficiency data on a uniform basis leads to higher confidence and thus also to lower consumption costs

Your Request

Further Projects - Measurements and Tests

Image

Non- invasive flow measurements

PDPA - flow fields and particle sizes

Image

Laseroptical measurement

PIV and LDA / PDA

Image

Performance tests of condensing units

Does your condensing unit perform well?

Image

State of system and failure analyses

Cause of the failure unknown?

Image

Thermostatic Expansion Valves

Does the TXV function correctly?