Current research projects

Image IO-Scan - Integral measuring optical scanning method
Image Corrosion inhibitor for ammonia absorption systems
Image Software for test rigs
Image Hybrid- Fluid for CO2-Sublimation Cycle
Image Certification of efficient air conditioning and ventilation systems through the new "indoor air quality seal" for non-residential buildings
Image Tensile and compression testing
Image Software modules
Image Optimizing HVAC operation with machine learning
Image Investigation of material-dependent parameters
Image Range of services laboratory analyses
Image Micro fluidic expansion valve
Image Laseroptical measurement
Image Service offer for Leak Detection and Tightness Test
Image In-Situ-Swelling Behaviour of Polymer Materials in Flammable Fluids
Image Lifetime prediction of hermetic compressor systems
Image Overall System Optimization of Refrigeration Plant Systems for Energy Transition and Climate Protection

You are here:  Home /  Research and Development


Intelligent innovative power supply for superconducting coils

Dr. Andreas Kade

+49-351-4081-5117

Compact, powerful power supply with 4-quadrant converter

The aim of the R&D project is the development of an intelligent innovative power supply as a 4-quadrant controller and energy storage device, which consists of a communicating system between quench protection and current flow control at the superconductor. The development shall be characterized by safety, compactness, accuracy, user friendliness, good price-performance ratio and modularity. The combination of cryogenic and warm electronics will provide significant advantages.
The functional model developed and constructed for this purpose has the following parameters and properties:

  • 4-quadrant power supply with ± 25 V and ± 14 kA
  • Constant voltage quench protection system
  • Cryogenic switch (cryogenic)
  • Energy storage system

The components for the energy storage system consists of individual cells with a capacity of 3000 F and a voltage of 2.7 V. 51 modules are connected in parallel, each with 10 individual cells, to form a capacitor bank. This results in a capacity of 15,300 F and a voltage of 25 V. A 3 kA, 30 V device serves as power supply, which has already been successfully tested on a cryogenic power supply.
In the next step, the configured capacitor modules for the energy storage and the boards of the 4-quadrant controller, see Figure 1, were combined in three switch cabinets, see Figure 2. The completed switch cabinet is shown in Figure 3. First results were presented at the 16th Cryogenics in October 2021.
 


Your Request

Further Projects - Research and Development

Image

Industry 4.0 membrane heat and mass exchanger (i-MWÜ4.0)

Linking the entire life cycle of a multi-functional air handling unit

Image

Innovative small helium liquefier

Liquefaction rates from 10 to 15 l/h

Image

Filter Tests

INDUSTRIAL AND LABORATORY PRECIPITATORS

Image

Low Temperature Tribology

Tribological studies at cryogenic temperatures

Image

Refrigerants, lubricants and mixtures

Determination of working fluid properties