Aktuelle Forschungsprojekte

Image Initiierung eines Lithiumkreislaufes – Recycling von Lithiumbromidlösungen aus Absorptionskälteanlagen (ReLiA)
Image Reduktion der Schallemission von Darrieus-Windturbinen
Image Wärmeübergang in Ferro-Nanofluiden unter Magnetfeldeinfluss
Image Kalibrierleck für die Wasserbad Dichtheitsprüfung
Image Leistungsprüfung an Verflüssigungssätzen
Image ZeroHeatPump
Image Prüfstand für Ventilatoren nach DIN EN ISO 5801
Image Druckfestigkeitsprüfung von CO2 Anlagen
Image Vakuum-Flüssigeis-Technologie
Image Entwicklung von Handlungsempfehlungen für praxisgerechte Lüftungskonzepte und Entwicklung eines CO2-Berechnungstools
Image Apparatur und Verfahren zur Degradationsprüfung
Image Elektrochemische Dekontamination leitfähiger Oberflächen „EDeKo II“
Image Hybrid- Fluid für CO2-Sublimations-Kältekreislauf
Image PerCO
Image Heat2Power
Image Verbundvorhaben Öl-Effiziente Kältesysteme – Schmierstoffwahl für Kälteanlagen unter dem Gesichtspunkt der Energieeffizienz

Sie befinden sich hier:  Startseite /  Forschung und Entwicklung


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte - Forschung und Entwicklung

Image

Zustands- und Schadensanalysen

Ist der Zustand des Kältemittelverdichters ok?

Image

Thermostatische Expansionsventile

Arbeitet das TEV eigentlich richtig?

Image

Testzentrum PLWP am ILK

Prüfung Fluid-Energiemaschinen und kältetechnische Bauteile

Image

Elektrische Auskopplung aus einer Expansionsturbine

Kostengünstige Umwandlung kleiner elektrischer Leistungen

Image

Drallfrei unterwegs...

...mit einem gegenläufigen Radialventilator