Aktuelle Forschungsprojekte

Image Kryoflüssigkeitspumpen für tiefkalt verflüssigte Gase wie z.B. LIN, LOX, LHe, LH2, LNG, LAr
Image Prüfverfahren für elektrische Komponenten
Image Thermische Speicherung mit PCM
Image Elektrische Komponenten in Kältekreisläufen
Image Ressourcenoptimierung und Beschleunigung von Strömungssimulationen mittels künstlicher Intelligenz
Image Mikrofluidisches Expansionsventil
Image Abluftbehandlungsmethode zur Abscheidung von Spurenstoffen in neuen Produktionsverfahren
Image ML-basierte Module für intelligente TGA-Planungssoftware
Image Beladungssensor für Adsorptionsfilter
Image Wasserstoff- und Methan-Versuchsfeld am ILK
Image Entwicklung und Erprobung des Einsatzes von Phasenwechselmaterialien an WEMS (Window Energy Management Systems)
Image Zertifizierung von effizienten Klima- und Lüftungsanlagen durch das neue „Qualitätssiegel Raumlufttechnik“ für Nichtwohngebäude
Image Untersuchung von Kühlsolen
Image Nachweis der Lagerbeständigkeit von Kryoröhrchen
Image 3D - Strömungssensor
Image Magnetfeldbeeinflusster Schmelzpunkt des Wassers

Sie befinden sich hier:  Startseite /  Forschung und Entwicklung


ML-basierte Module für intelligente TGA-Planungssoftware

INNO-KOM

10/2022 - 02/2025

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

intelliKL

Maschinenlernbasierte Unterstützung für die optimale Auslegung von Raumkühlsystemen

Motivation

  • weltweit nimmt der Einsatz von Kühl- und Klimasystemen stetig zu
  • Planung und Auslegung bilden Fundament für Behaglichkeit und Energieeffizienz
  • dynamische Kühllastauslegung nach VDI 2078 basiert auf vielfältigen Einflussfaktoren
  • berücksichtigt Zusammenspiel von Raum, Anlage und Nutzung
  • Software nimmt Planern hauptsächlich die Arbeit des Rechnens ab
  • Finden optimaler Planungslösungen (Art und Kombination von Kühlsystemen, Regelung) bisher aber durch zeitaufwendigen manuellen Variantenvergleich

Projektziel

  • Entwicklung ML-basierter Softwaremodule
  • Realisierung von drei Intelligenz-Stufen

Lösungsansatz

  • Verwendung von ML-Verfahren für Ausreißer-detektion, Clustering und Regression
  • Erstellung von Beispielkonfigurationen
  • teilautomatisierte Generierung einer umfangreichen Datenbasis für Training und Test der ML-Algorithmen
  • Erstellung von Blackbox-Modulen zur Anbindung an Planungssoftware
  • Funktionsnachweis in Praxistests

Ihre Anfrage zum Projekt

Weitere Projekte - Forschung und Entwicklung

Image

Thermostatische Expansionsventile

Arbeitet das TEV eigentlich richtig?

Image

Testzentrum PLWP am ILK

Prüfung Fluid-Energiemaschinen und kältetechnische Bauteile

Image

Elektrische Auskopplung aus einer Expansionsturbine

Kostengünstige Umwandlung kleiner elektrischer Leistungen

Image

Drallfrei unterwegs...

...mit einem gegenläufigen Radialventilator

Image

Leistungsprüfung an Kältemittelverdichtern

Wie gut ist eigentlich der Verdichter?