Aktuelle Forschungsprojekte

Image Reduzierung der Expansionsverluste von Kälteanlagen
Image Prüfverfahren für Außenluftfilter
Image Initiierung eines Lithiumkreislaufes – Recycling von Lithiumbromidlösungen aus Absorptionskälteanlagen (ReLiA)
Image Mollier hx-Diagramm
Image Kryostate aus GFK oder Metall
Image Entwicklung eines schnellen Rechenverfahrens..
Image Chemische Wasserbinder/Enteiser für Kältekreisläufe - CheWa
Image CFE-Test Dunstabzugshauben
Image Seminar Lecksuche / Dichtheitsprüfung in der Kältetechnik
Image Stoffdatenmodule
Image Prüfverfahren für elektrische Komponenten
Image Wärmeübergang in Ferro-Nanofluiden unter Magnetfeldeinfluss
Image Testzentrum PLWP am ILK
Image Verhalten mehrphasiger kryogener Fluide
Image Bewertungsverfahren für Systeme mit Sekundärluft und Raumwirkung
Image Entwicklung von Handlungsempfehlungen für praxisgerechte Lüftungskonzepte und Entwicklung eines CO2-Berechnungstools

Sie befinden sich hier:  Startseite /  Forschung und Entwicklung


Phasenauflösende numerische Simulation von Suspensionen

Prof. Dr.-Ing. Tobias Kempe

+49-351-4081-5317

SUSPENSE

Kurzbeschreibung

Die Zugabe von Partikeln zu Flüssigkeiten verändert deren physikalische Eigenschaften, wie z. B. die effektive Dichte, Viskosität und Wärmeleitfähigkeit. Basisfluide wie Wasser oder Öl weisen in der Regel Newtonsche Eigenschaften auf, d. h., die Scherspannung ist proportional zur Scherrate. Suspensionen hingegen zeigen ein deutlich komplexeres rheologisches Verhalten. Derzeit werden die effektive Viskosität und Wärmeleitfähigkeit von Suspensionen bevorzugt messtechnisch ermittelt, da numerische Simulationen in diesem Zusammenhang mit größeren Unsicherheiten behaftet sind.

Einsatzbereiche

Viele flüssige Produkte, wie Farben, Tinten, Getränke, Medikamente, Schlämme oder Duschgels, enthalten verschiedene Arten von Partikeln, um das gewünschte Endprodukt zu erzielen oder die Verarbeitungseigenschaften anzupassen.

Zielstellung

Ziel des Projekts ist die Entwicklung numerischer Verfahren zur Berechnung der effektiven Viskosität und Wärmeleitfähigkeit von Suspensionen. Dabei wird das Strömungsfeld um die Partikel sowie das Temperaturfeld im Inneren und außerhalb der Partikel räumlich erfasst. Die hochpräzise Simulation der relevanten physikalischen Prozesse auf mikroskopischer Ebene ermöglicht es, das rheologische und thermische Verhalten von Suspensionen zu charakterisieren und zu optimieren. Ein bewährtes Verfahren zur Berechnung vieler beweglicher Partikel in einem strömenden Fluid ist die Immersed-Boundary-Methode, welche auch in diesem Projekt angewendet wird.

Vorgehen

  • Implementierung einer Immersed-Boundary-Methode für bewegliche Partikel
  • Validierungsrechnungen für feststehende Einzelpartikel in laminarer Strömung
  • Realisierung scherperiodischer Randbedingungen
  • Simulationen zur effektiven Viskosität und Wärmeleitfähigkeit von Suspensionen
  • Untersuchung mono- und polydisperser Gemische
  • Erstellung von Regime-Karten auf Basis der Simulationsdaten

Fazit / Ausblick

Die Entwicklung einer geeigneten Methode eröffnet vielfältige Anwendungsmöglichkeiten, insbesondere in drei Bereichen: (a) numerische Simulationen ergänzen die experimentelle Charakterisierung von Suspensionen, um deren rheologisches und thermisches Verhalten zu erfassen; (b) durch Simulationen kann die Zusammensetzung von Suspensionen optimiert werden, um gewünschte Eigenschaften zu erzielen; (c) makroskopische Korrelationen für effektive Stoffwerte wie Viskosität und Wärmeleitfähigkeit sollen für Strömungssimulationen mit kommerziellen Programmen abgeleitet werden.


Ihre Anfrage zum Projekt