Current research projects

Image Low noise and non metallic liquid-helium cryostat
Image Influenced melting point of water by magnetic field
Image Testing of mobile leak detectors according to DIN EN 14624
Image Micro fluidic expansion valve
Image Software modules
Image 3D - Air flow sensor
Image Air-flow test rig for fan characteristic measurement
Image Electrical components in refrigeration circuits
Image Intelligent innovative power supply for superconducting coils
Image Pulse-Tube-Refrigerator with sealed compressor
Image Test procedures for electrical components
Image Thermal engines
Image Hydrogen and methane testing field at the ILK
Image Laseroptical measurement
Image Innovative small helium liquefier
Image Tensile and compression testing

You are here:  Home /  Research and Development


Hydrogen and methane testing field at the ILK

BMWi

Dr. Andreas Kade

+49-351-4081-5117

Simultaneously pressures up to 1,000 bar, temperatures down to –253°C

ILK Dresden operates an innovative testing ground for cryogenic high-pressure applications with hydrogen (H2), methane (CH4), and methane–hydrogen mixtures. With this, different services can be offered, among other things:

  • Test and qualification of components at temperatures ranging from 20 K (−253 °C) to room temperature and pressures ranging from high vacuum to 1000 bar (e.g. test of sealings, permeation tests).
  • Investigation of charge and discharge processes at cryogenic or room-temperature-operated storage systems for hydrogen and methane (e.g. adsorber storage systems, cryo-compressed hydrogen).
  • Investigation of catalyst materials for the ortho–para conversion of hydrogen.
  • Long-time thermal charging of components and materials in hydrogen or methane atmosphere at up to +200 °C and up to 160 bar for investigating degradation effects (e.g. hydrogen embrittlement).
  • Development of different hydrogen and methane components (e.g. recooling systems, latent-heat storage systems, cryogenic pressure storage systems, heat exchangers, cryogenic pumps).
  • Realisation of complete-system solutions for hydrogen and methane.

The following diagram depicts the specific storage density that can be achieved depending on temperature and pressure:


Your Request