Current research projects

Image Innovative cryogenic cooling system for the recondensation / liquefaction of technical gases up to 77 K
Image Software for technical building equipment
Image In-situ investigation concerning the swelling behaviour of polymer materials under elevated pressures and temperatures
Image Intelligent innovative power supply for superconducting coils
Image Testing of mobile leak detectors according to DIN EN 14624
Image Air-water heat pumps
Image Measurements on ceiling mounted cooling systems
Image In-Situ-Swelling Behaviour of Polymer Materials in Flammable Fluids
Image Thermal engines
Image Ice Slurry Generation
Image Software modules
Image Measurement of insulated packaging
Image Development of a Cryogenic Magnetic Air Separation Unit
Image Micro fluidic expansion valve
Image Reducing the filling quantity
Image Certifiable connection types in cryogenics

You are here:  Home /  Research and Development


Hydrogen and methane testing field at the ILK

BMWi

Dr. Andreas Kade

+49-351-4081-5117

Simultaneously pressures up to 1,000 bar, temperatures down to –253°C

ILK Dresden operates an innovative testing ground for cryogenic high-pressure applications with hydrogen (H2), methane (CH4), and methane–hydrogen mixtures. With this, different services can be offered, among other things:

  • Test and qualification of components at temperatures ranging from 20 K (−253 °C) to room temperature and pressures ranging from high vacuum to 1000 bar (e.g. test of sealings, permeation tests).
  • Investigation of charge and discharge processes at cryogenic or room-temperature-operated storage systems for hydrogen and methane (e.g. adsorber storage systems, cryo-compressed hydrogen).
  • Investigation of catalyst materials for the ortho–para conversion of hydrogen.
  • Long-time thermal charging of components and materials in hydrogen or methane atmosphere at up to +200 °C and up to 160 bar for investigating degradation effects (e.g. hydrogen embrittlement).
  • Development of different hydrogen and methane components (e.g. recooling systems, latent-heat storage systems, cryogenic pressure storage systems, heat exchangers, cryogenic pumps).
  • Realisation of complete-system solutions for hydrogen and methane.

The following diagram depicts the specific storage density that can be achieved depending on temperature and pressure:


Your Request

Further Projects - Research and Development

Image

Investigation of material-dependent parameters

Investigation of the permeation behavior

Image

Cool Up

Upscaling Sustainable Cooling

Image

Ionocaloric cooling

Ionocaloric solid-liquid phase cooling process

Image

Low temperature – test facilities

thermal cycling tests at very low temperatures