Aktuelle Forschungsprojekte

Image All-In-One Gerät für Gefriertrocknung und Biomaterialherstellung
Image Drallfrei unterwegs...
Image Software für die TGA-Planung
Image Entwicklung eines kryogenen magnetbasierten Luftzerlegers
Image Lüftungsgerät mit akustischer Regelungsoption
Image Industrie-4.0-Membran-Wärme-und-Stoffübertrager (i-MWÜ4.0)
Image Leistungsmessung an Wärmeübertragern
Image In-Situ-Untersuchungen zum Quellverhalten von Polymerwerkstoffen unter erhöhten Drücken und Temperaturen
Image Numerische und Experimentelle Untersuchung zum Gefährdungspotential durch SARS-CoV-2 in klimatisierten Räumen
Image Kältemittel- und Kältemaschinenöl-Untersuchungen
Image Befeuchtungsanlage für hochreine Gase
Image Akustik und Schwingungen
Image CFE-Test Dunstabzugshauben
Image Zertifizierung von effizienten Klima- und Lüftungsanlagen durch das neue „Qualitätssiegel Raumlufttechnik“ für Nichtwohngebäude
Image Tieftemperaturtribologie
Image Reduktion der Schallemission von Darrieus-Windturbinen

Sie befinden sich hier:  Startseite /  Softwareentwicklung


Wärmeübergang in Ferro-Nanofluiden unter Magnetfeldeinfluss

02/2022 - 07/2024

Silvio Tschisgale

+49-351-4081-5328

abgeschlossen

MagNum

Kurzbeschreibung

Anlagen wesentlich. Seit einiger Zeit befasst sich das ILK Dresden mit innovativen Ansätzen zur Effektivitätssteigerung konvektiver Wärmeübertrager, insbesondere durch den Einsatz von Nanofluiden als Transportmedium. In Vorstudien wurde gezeigt, dass solche Fluide den Wärmeübergang deutlich steigern können. Darüber hinaus scheint durch den Einsatz von Ferronanofluiden in Kombination mit bestimmten Magnetfeldern eine weitere positive Einflussnahme auf den Wärmeübergang möglich. Bislang sind die zugrunde liegenden physikalischen Effekte sowie die Grenzen der Technologie nicht abschließend geklärt. Das Projekt soll auf Basis experimenteller sowie numerischer Studien offene Fragenstellungen beantworten.

Einsatzbereiche

Der Einsatz von Nanofluiden und Ferrofluiden in technischen Systemen mit leistungsfähigen Wärmeübertragern kann eine signifikante Steigerung des Wärmeübergangs ermöglichen. Zusätzlich kann unter gewissen Bedingungen der Wärmeübergang gezielt gesteuert werden, indem Magnetfelder auf die eingesetzten Ferrofluide wirken.

Zielstellung

Mit Hilfe hochauflösender numerischer Simulationen soll die zeitliche und räumliche Struktur magnetisch beeinflusster Strömungen aufgeklärt werden. Das Verständnis dieser Strukturen dient der zielgenauen Implementierung von Magnetfeldern zur Erhöhung, aber insbesondere zur Kontrolle / Schaltung der Wärmeübertragung. Magnetfelder werden dabei als lokale bzw. temporäre Aktuatoren verstanden. Experimentelle Untersuchungen dienen zur Validierung der numerischen Resultate.

Ergebnisse / Aktueller Stand

Die numerischen und experimentellen Untersuchungen führten zu folgenden Ergebnissen:

Nanofluide können aufgrund der positiven thermo-physikalischen Materialeigenschaften der enthaltenen Nanopartikel den Wärmeübergang sowohl im laminaren als auch im turbulenten Strömungsregime deutlich verbessern. Ein Nachteil ist jedoch, dass das Einbringen der Partikel die viskosen Effekte erheblich verstärkt, was zu einem überproportionalen Anstieg der benötigten Pumpenleistung führt. Durch den Einsatz von Magnetfeldern lässt sich der Wärmeübergang zusätzlich steigern, allerdings nur im laminaren Bereich. Bereits im niedrigen turbulenten Strömungsregime zeigen derzeitigen Ferrofluide keine Verbesserung mehr. Dies ist auf die begrenzte natürliche Sättigungsmagnetisierung der Partikel zurückzuführen, welche eine weitere Zunahme der strömungsbeeinflussenden Kräfte verhindert.


Ihre Anfrage zum Projekt

Weitere Projekte - Softwareentwicklung

Image

Strömungssimulation CFD

Wissenschaftliche Untersuchung von Strömungen

Image

Dynamische Gebäude- und Anlagensimulation mit TRNSYS

Wissenschaftliche Analyse thermodynamischer Prozesse in Gebäuden und Anlagen

Image

Elektronische Multifunktionsmodule für kryogene Anwendungen

Elektronik mit geringem Verkabelungsaufwand - mehr als 100 Sensoren über eine Durchführung

Image

Cl.Ai.Co - Clever Air Components

Entwicklung eines innovativen Systems für eine energieeffiziente Gebäudeklimatisierung

Image

Füllmengenreduzierung

Wie viel Kältemittel muss gefüllt werden?