Aktuelle Forschungsprojekte

Image Panel mit indirekter Verdunstungskühlung über Membran
Image Wetterschutzhaube mit integrierter nachhaltiger Kühlfunktion | NaKu-WSH
Image Mollier hx-Diagramm
Image Thermische Speicherung mit PCM
Image Lüftungsgerät mit akustischer Regelungsoption
Image Wasser-Luft-Kühler-Kit für Helium Kompressoren in der Kryotechnik
Image Untersuchungen an Deckenkühlgeräten
Image Seminar Evakuieren und Trocknen von Kälteanlagen
Image Luft-Wasser Wärmepumpen
Image Korrosionsinhibitor für Ammoniak-Absorptions-Anlagen
Image Untersuchungen von Werkstoffen
Image Füllmengenreduzierung
Image Prüfstände für Kälte- und Wärmepumpentechnik
Image Innovatives Tieftemperaturkühlsystem zur Rekondensation / Verflüssigung von technischen Gasen bis 77 K
Image Textiler Wärme- und Stoffübertrager in KVS-Systemen
Image Hochtemperatur - Korrosionsinhibitoren zur Sicherung der Erweiterung des Anwendungsbereiches Abwärme nutzender Kälteerzeugung

Sie befinden sich hier:   /  Startseite


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte

Image

CaptureTest – Erfassungsgrad von Absaugern für Kochdünste

Entwicklung eines Prüfverfahrens für den Erfassungsgrad von Dunstabzügen

Image

Neues sorptives Entfeuchtungssystem mit Energiespeicherung mit Naturmaterial - SEENaM

Lufttrocknung als Demand-Response-System grüner Stromerzeugung

Image

Strahltechnikentwicklung mit Wassereis-Strahlmittel

Nachhaltiger, kontaminationsfreier Prozess für Medizin und Industrie

Image

StellarHeal – Wound Healing in Space and on Earth

Ein disruptives Wundbehandlungskonzept für die Raumfahrtmedizin

Image

Matrix-Design for Artificial Meat (MADAM)

Wirtschaftlich konkurrenzfähige Steaks aus dem Zellkulturlabor