Aktuelle Forschungsprojekte

Image Elektrische Komponenten in Kältekreisläufen
Image Entwicklung eines kryogenen magnetbasierten Luftzerlegers
Image Ultradichte Kryoröhrchen als neuartige Primärpackmittel - Ultrakryo
Image ZeroHeatPump
Image PerCO
Image Füllmengenreduzierung
Image Seminar Evakuieren und Trocknen von Kälteanlagen
Image Elektrische Auskopplung aus einer Expansionsturbine
Image Praktikum, Diplom, Master, Bachelor
Image Strahltechnikentwicklung mit Wassereis-Strahlmittel
Image Thermosyphon mit in situ beschichtetem Verdampfer
Image Heat2Power
Image Gesamtsystemoptimierung von Kältetechnischen Anlagensystemen für Energiewende und Klimaschutz
Image Stoffdatenmodule
Image Kältemengenzähler
Image Elektrochemische Dekontamination leitfähiger Oberflächen „EDeKo II“

Sie befinden sich hier:   /  Startseite


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte

Image

ZeroHeatPump

Leistungsführung von Klein-Wärmepumpen ohne Energieverbrauch

Image

KLAR

Klassenraumlüftung akustikbasiert regeln