Aktuelle Forschungsprojekte

Image Prüfverfahren für Außenluftfilter
Image Entwicklung Prüfverfahren und Prüfstand für stationäre Einbau-Kältesätze
Image Untersuchung von materialabhängigen Parametern
Image Prüfverfahren und Prüfvorrichtungen für ABEK Filterelemente
Image Sole (Wasser)-Wärmepumpen
Image In-Situ-Untersuchungen zum Quellverhalten von Polymerwerkstoffen unter erhöhten Drücken und Temperaturen
Image Wärmeübergang in turbulenten Ferro-Nanofluiden unter dem Einfluss von Magnetfeldern
Image Thermostatische Expansionsventile
Image CO₂ GASHYDRATE FÜR NACHHALTIGE ENERGIE- UND KÜHLLÖSUNGEN
Image Untersuchung von Kühlsolen
Image Hochtemperatur Wärmepumpe
Image Kryoflüssigkeitspumpen für tiefkalt verflüssigte Gase wie z.B. LIN, LOX, LHe, LH2, LNG, LAr
Image Mikrowärmeübertrager in der Kältetechnik
Image Tieftemperaturtribologie
Image Ionokalorische Kälteerzeugung
Image Leistungsangebot Laboranalysen

Sie befinden sich hier:   /  Startseite


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte

Image

Testzentrum PLWP am ILK

Prüfung Fluid-Energiemaschinen und kältetechnische Bauteile

Image

Drallfrei unterwegs...

...mit einem gegenläufigen Radialventilator

Image

Leistungsprüfung an Kältemittelverdichtern

Wie gut ist eigentlich der Verdichter?

Image

Thermische Kälteerzeugung / Absorptionskältetechnik

Kraft-Wärme-Kälte-Kopplung, Fernwärme, Solarthermie oder Abwärme zur Kälteerzeugung

Image

Vakuum-Flüssigeis-Technologie

Flüssigeiserzeugung durch Direktverdampfung