Aktuelle Forschungsprojekte

Image Prüfstände für Kälte- und Wärmepumpentechnik
Image Controlled Rate Freezing-Gerät für Multiwellplatten (CRF-Multi)
Image Entwicklung und Erprobung des Einsatzes von Phasenwechselmaterialien an WEMS (Window Energy Management Systems)
Image Mikrofluidisches Expansionsventil
Image Elektrochemische Dekontamination leitfähiger Oberflächen „EDeKo II“
Image Leistungsangebot Laboranalysen
Image Untersuchung von materialabhängigen Parametern
Image RauMLuft.ROM | ROM - basierte Vorhersage von Raumluftströmungen mit maschinellem Lernen
Image Korrosionsinhibitor für Ammoniak-Absorptions-Anlagen
Image Messung Isolierverpackung
Image Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen
Image Cool Up
Image Prüfstände zur Messung der Luftleistung
Image Initiierung eines Lithiumkreislaufes – Recycling von Lithiumbromidlösungen aus Absorptionskälteanlagen (ReLiA)
Image Hochtemperatur - Korrosionsinhibitoren zur Sicherung der Erweiterung des Anwendungsbereiches Abwärme nutzender Kälteerzeugung
Image Apparatur und Verfahren zur Degradationsprüfung

Sie befinden sich hier:   /  Startseite


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte

Image

Thermische Speicherung mit PCM

Von der Speicheraufgabe zur Anwendung

Image

Kryostate aus GFK oder Metall

Lageunabhängig, nicht-metallisch, hohe Standzeit für flüssig Stickstoff und flüssig Helium

Image

Rauscharme, nichtmetallische Flüssig-Heliumkryostate

Magnetisch rauscharm für z.B. SQUID-Anwendungen

Image

Prüfverfahren für Außenluftfilter

Bewertung von biologisch aktiven Außenluftfiltern

Image

Strömungssimulation CFD

Wissenschaftliche Untersuchung von Strömungen