Aktuelle Forschungsprojekte

Image Druckfestigkeitsprüfung von CO2 Anlagen
Image Software für Prüfstände
Image Hybrid- Fluid für CO2-Sublimations-Kältekreislauf
Image Mikrowärmeübertrager in der Kältetechnik
Image Kalibrierung von Tieftemperatursensoren
Image KLAR
Image Prüfung mobiler Leckdetektoren nach DIN EN 14624
Image Strömungssimulation CFD
Image CO2-Trockeneis-Sublimation zur Tieftemperaturkühlung
Image Reduzierung der Expansionsverluste von Kälteanlagen
Image Solare Kühlung
Image Beladungssensor für Adsorptionsfilter
Image Pulse-Tube-Kühler mit Hermetikverdichterantrieb
Image Leistungsangebot der Lecksuche und Dichtheitsprüfung
Image Tribologische Untersuchungen im System Öl-Kältemittel-Werkstoff
Image Rohrgekapselte Latentwärmespeicher

Sie befinden sich hier:   /  Startseite


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte

Image

Apparatur und Verfahren zur Degradationsprüfung

Auslegung von Prüfverfahren für biologisch abbaubare Medizinprodukte

Image

All-In-One Gerät für Gefriertrocknung und Biomaterialherstellung

mit automatisierter Einfrier- und Sterilisationsoption

Image

Chemische Wasserbinder/Enteiser für Kältekreisläufe - CheWa

Energetisch und Bauteiloptimierte Kältekreisläufe kleiner Leistung

Image

Untersuchungen nach DIN EN ISO 14903

Diese Prüfungen nach DIN EN ISO 14903 sind am ILK Dresden möglich