Current research projects

Image CFE-Test of Cooker Hoods
Image CO₂ GAS HYDRATES FOR SUSTAINABLE ENERGY AND COOLING SOLUTIONS
Image Performance tests of condensing units
Image Test method for high - temperature heat pump - oils
Image Micro heat exchangers in refrigeration
Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr
Image Investigation of material-dependent parameters
Image Software modules
Image Overall System Optimization of Refrigeration Plant Systems for Energy Transition and Climate Protection
Image Lifetime prediction of hermetic compressor systems
Image Air-flow test rig for fan characteristic measurement
Image Tensile and compression testing
Image Modular storage system for solar cooling
Image Micro fluidic expansion valve
Image Cold meter
Image Swirl-free on the move...

You are here:   /  Home


Development of a Cryogenic Magnetic Air Separation Unit

Federal Ministry for Economic Affairs and Climate Action

02/2022-07/2024

Erik Neuber

+49-351-4081-5122

Oxygen Enrichment by Applied Cryogenic Magnetohydrodynamics

Nowadays, for oxygen enrichment from air, various commercial options are available, among other things, pressure swing adsorption, cryogenic rectification, and membranes. Although well-established, most of these methods do have a relative high specific energy demand for small-to-medium production rates (in this context: 0–100 TPD (tonnes per day) of oxygen) and relative high purities (at least 90 vol% of oxygen) [1].

To close this gap, ILK Dresden intends to develop and optimise an efficient cryogenic magnetic air separation unit that enables oxygen enrichment by means of OGMS (open-gradient magnetic separation). Motivated by provisional first-shot experiments, for a first setup, the following parameters are being targeted:

  • Operating pressure: 1–3 bar(a);
  • Degree of purity: 95 vol% oxygen;
  • Production rate: 5 standard l/min oxygen;
  • Specific energy demand: 160–180 kWh/t oxygen;
  • Required time for start-up: 30–60 min;
  • Continuous operation;
  • Less maintenance requirements than pressure swing adsorption;
  • Comparable space requirements as pressure swing adsorption.

Moreover, based on the experimental results, the scalability of the system for higher production rates of up to 100 TPD oxygen shall be analysed.

For this patented technology, ILK Dresden is looking for industrial partners that have interest in financial participation, specific applications, or further developments.

Granted Patent:

DE 10 2021 109 146 A1


Your Request

Further Projects

Image

Software for technical building equipment

Design cooling load and energetic annual simulation (VDI 2078, VDI 6007, VDI 6020)

Image

Measurements on ceiling mounted cooling systems

Comparative performance measurement

Image

Micro fluidic expansion valve

for increasing of the efficiency of small and compact cooling units

Image

Solar Cooling

Solar Cooling with Photovoltaic

Image

Hydrogen and methane testing field at the ILK

Simultaneously pressures up to 1,000 bar, temperatures down to –253°C