Current research projects

Image Service offer for Leak Detection and Tightness Test
Image Mass Spectrometer
Image Performance tests of condensing units
Image Brine (water)-water heat pump
Image Optimizing HVAC operation with machine learning
Image Computational fluid dynamics CFD
Image Cold meter
Image Hybrid- Fluid for CO2-Sublimation Cycle
Image ZeroHeatPump
Image Corrosion inhibitor for ammonia absorption systems
Image Panel with indirect evaporative cooling via membrane
Image Reducing the filling quantity
Image Innovative cryogenic cooling system for the recondensation / liquefaction of technical gases up to 77 K
Image Swirl-free on the move...
Image State of system and failure analyses
Image Development of test methods and test rigs for stationary integrated refrigeration units

You are here:   /  Home


Optimizing HVAC operation with machine learning

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in progress

Intelligent control of HVAC systems – high comfort with low energy demand

Motivation

During operation, the energy efficiency of many HVAC systems remains considerably below the value predicted when planning. One reason is that especially complex systems with multiple generators, storages and consumer locations frequently are not operated optimally.

Aim of the project

Development of a tool for optimizing the operation of HVAC systems which uses machine learning (ML) methods and data from the digital building model (Building Information Model, BIM):

  • Optimization goal: high energy efficiency with at the same time high comfort for users

  • Saving operating costs, energy and carbon dioxide emissions due to increased efficiency

  • Continuous autonomous improvement of the ML algorithm by learning from new measured data with auto-adaptive reaction to changing conditions (building, system, use, smart meter for real time billing of energy and media, etc.)

Approach

  • Reproduction of the real system’s thermal-energetic behaviour in the machine learning system, training with BIM data, measured data and a digital twin of the real system
  • Application of ML methods for load forecasting (weather, usage patterns)

  • Automatic classification of utilisation scenarios, fault detection

  • Integration of available tools for efficient simulation of indoor air flows and for calculating energy demands

  • Co-Validation of optimization tool, experimental studies and digital twin

Interested?

Please get in touch with us if you are interested in a cooperation: klima@ilkdresden.de

 


Your Request

Further Projects

Image

Verification of storage suitability of cryo tubes

Artificial aging of primary packaging for biobanking applications

Image

Preformance measurements of heat exchangers

Is the heat exchanger properly sized?

Image

Innovative small helium liquefier

Liquefaction rates from 10 to 15 l/h

Image

Filter Tests

INDUSTRIAL AND LABORATORY PRECIPITATORS