Current research projects

Image State of system and failure analyses
Image Verification of storage suitability of cryo tubes
Image Micro fluidic expansion valve
Image Cold meter
Image Low Temperature Tribology
Image Testing of mobile leak detectors according to DIN EN 14624
Image Low noise and non metallic liquid-helium cryostat
Image Performance tests of refrigerant compressors
Image Optimizing HVAC operation with machine learning
Image Practical training, diploma, master, bachelor
Image Innovative Parahydrogen Generator Based on Magnets
Image Investigation according to DIN EN ISO 14903
Image Helium extraction from natural gas
Image Cool Up
Image Calibration leak for the water bath leak test
Image Tribological investigations of oil-refrigerant-material-systems

You are here:   /  Home


Panel with indirect evaporative cooling via membrane

INNO-KOM

01/2023 - 06/2025

Dipl.-Ing. (FH) Hannes Rosenbaum

+49-351-4081-5324

Natural Cooling Panel

Development of a decentralised cooling panel with outdoor air connection, without refrigerant, without humidity input into the room air, retrofittable and with coefficients of performance (COP) > 10

Motivation

  • GWP = 0; COP > 10; 100% renewable energy
  • Decentralised indirect evaporative cooling with no moisture in the indoor or outdoor air
  • Self-sufficient operation, rainwater harvesting
  • Radiant and convective air discharge

Project Objective

  • Application of regenerative and sustainable cooling via evaporative cooling in a decentralised air conditioning system (COP > 10)
  • Functional combination of evaporative cooling and supply of purified outdoor air
  • Novel membrane heat exchanger for two air streams and evaporation water including numerical calculation model
  • Novel convection and radiation efficient air outlet for minimum draught risk
  • Modular, cascadable unit concept for on-demand performance and off-grid and CO2-neutral operation (for PV power supply)
  • Ceiling-mounted, wall-mounted or free-standing cooling panels for residential and non-residential buildings, retrofittable and acoustically compliant

Solution Approach

  • Development of a membrane heat exchanger based on 4-layer textile laminates
  • Development of equipment based on supply air recirculation and exhaust air humidification processes
  • Development of an air outlet for convection and radiation cooling performance
  • MSR and system components for rainwater harvesting, site-independence and cascading

Your Request

Further Projects

Image

Software for technical building equipment

Design cooling load and energetic annual simulation (VDI 2078, VDI 6007, VDI 6020)

Image

Measurements on ceiling mounted cooling systems

Comparative performance measurement

Image

Micro fluidic expansion valve

for increasing of the efficiency of small and compact cooling units

Image

Solar Cooling

Solar Cooling with Photovoltaic

Image

Hydrogen and methane testing field at the ILK

Simultaneously pressures up to 1,000 bar, temperatures down to –253°C