Current research projects

Image Tribological investigations of oil-refrigerant-material-systems
Image Lifetime prediction of hermetic compressor systems
Image Overall System Optimization of Refrigeration Plant Systems for Energy Transition and Climate Protection
Image Test method for high - temperature heat pump - oils
Image Micro heat exchangers in refrigeration
Image Corrosion inhibitor for ammonia absorption systems
Image High temperature heat pump
Image Certification of efficient air conditioning and ventilation systems through the new "indoor air quality seal" for non-residential buildings
Image Measurement of insulated packaging
Image CFE-Test of Cooker Hoods
Image 3D - Air flow sensor
Image Practical training, diploma, master, bachelor
Image Development of test methods and test rigs for stationary integrated refrigeration units
Image Investigation of coolants
Image Pulse-Tube-Refrigerator with sealed compressor
Image Non- invasive flow measurements

You are here:  Home /  Research and Development


Optimizing HVAC operation with machine learning

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in progress

Intelligent control of HVAC systems – high comfort with low energy demand

Motivation

During operation, the energy efficiency of many HVAC systems remains considerably below the value predicted when planning. One reason is that especially complex systems with multiple generators, storages and consumer locations frequently are not operated optimally.

Aim of the project

Development of a tool for optimizing the operation of HVAC systems which uses machine learning (ML) methods and data from the digital building model (Building Information Model, BIM):

  • Optimization goal: high energy efficiency with at the same time high comfort for users

  • Saving operating costs, energy and carbon dioxide emissions due to increased efficiency

  • Continuous autonomous improvement of the ML algorithm by learning from new measured data with auto-adaptive reaction to changing conditions (building, system, use, smart meter for real time billing of energy and media, etc.)

Approach

  • Reproduction of the real system’s thermal-energetic behaviour in the machine learning system, training with BIM data, measured data and a digital twin of the real system
  • Application of ML methods for load forecasting (weather, usage patterns)

  • Automatic classification of utilisation scenarios, fault detection

  • Integration of available tools for efficient simulation of indoor air flows and for calculating energy demands

  • Co-Validation of optimization tool, experimental studies and digital twin

Interested?

Please get in touch with us if you are interested in a cooperation: klima@ilkdresden.de

 


Your Request

Further Projects - Research and Development