Current research projects

Image Software modules
Image Brine (water)-water heat pump
Image Measurements on ceiling mounted cooling systems
Image Measurement of insulated packaging
Image IO-Scan - Integral measuring optical scanning method
Image Innovative small helium liquefier
Image Test procedures for electrical components
Image Performance tests of refrigerant compressors
Image Pulse-Tube-Refrigerator with sealed compressor
Image Thermostatic Expansion Valves
Image Investigation of materials
Image Micro fluidic expansion valve
Image Investigation according to DIN EN ISO 14903
Image Electrical components in refrigeration circuits
Image Cryostats, Non-Metallic and Metallic
Image Corrosion inhibitor for ammonia absorption systems

You are here:  Home /  Research and Development


Thermal engines

Industry

Dipl.-Ing. Gunar Schroeder

+49-351-4081-5129

Power Generation from Waste Heat

Principally every refrigeration process could also work as a power cycle. In this way an energy consuming machine which provides a temperature below the ambient temperature turns into a heat engine operating between the ambient and a higher temperature. In a first step cryogenic refrigeration cycles are used reversely as heat engines, as they can handle large temperature gradients.

Thermal engines similar to the Stirling cycles

In cooperation with FOX exhaust systems, the ILK Dresden has developed a waste heat recovery system. The thermal engine dedicated for the car exhaust gas system was now presented at the International Motor Show (IAA, 2011) in Frankfurt for the first time.

With the aid of a model the functionality was demonstrated impressively.

The prototype will deliver an electrical power of 2 kW, at an exhaust gas temperature between 300 and 500°C (570 to 930°F). Currently optimization work, mainly related to generator, is underway. The figure below shows the illustration of the thermal engine in an exhaust tract.

Thermal engines related to other thermodynamic cycles

With several industrial partners heat engines are under development, which operate according to the following thermodynamic cycles:

  • closed and open Joule process
  • valve less Ericsson process

Your Request

Further Projects - Research and Development

Image

Computational fluid dynamics CFD

Scientific analysis of flows

Image

Behavior of multiphase cryogenic fluids

experimental und numerical investigations

Image

Innovative Parahydrogen Generator Based on Magnets

Magnetic Gas Separation of the Hydrogen Isomers

Image

Innovative cryogenic cooling system for the recondensation / liquefaction of technical gases up to 77 K

high performance efficiency, environmental friendliness, compactness, cost-effectiveness