Aktuelle Forschungsprojekte

Image Entwicklung hydrolysebeständiger Hotmelt-Klebeverbunde für Prozessluft- und Klimaanwendungen unter Einhaltung hygienischer Anforderungen
Image Korrosionsinhibitor für Ammoniak-Absorptions-Anlagen
Image Elektrische Komponenten in Kältekreisläufen
Image Füllmengenreduzierung
Image Gesamtsystemoptimierung von Kältetechnischen Anlagensystemen für Energiewende und Klimaschutz
Image Prüfstände zur Messung der Luftleistung
Image Entwicklung eines schnellen Rechenverfahrens..
Image Prüfverfahren zur dynamischen Alterung von Werkstoffen
Image Zug- und Druckprüfung
Image Korrosionsinhibitor für Absorptionskälteanlagen
Image Solare Kühlung
Image Nachweis der Lagerbeständigkeit von Kryoröhrchen
Image Prüfverfahren für elektrische Komponenten
Image Cl.Ai.Co - Clever Air Components
Image Mikrofluidisches Expansionsventil
Image Leistungsprüfung an Verflüssigungssätzen

Sie befinden sich hier:  Startseite /  Forschung und Entwicklung


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte - Forschung und Entwicklung

Image

Pulse-Tube Kryokühler

für kryogene Hochleistungsanwendungen

Image

Pulse-Tube-Kühler mit Hermetikverdichterantrieb

mobil einsetzbar u.a. für die Wasserstofftechnologie

Image

Tieftemperaturtribologie

Tribologische Untersuchungen bei kryogenen Temperaturen

Image

Cl.Ai.Co - Clever Air Components

Entwicklung eines innovativen Systems für eine energieeffiziente Gebäudeklimatisierung