Aktuelle Forschungsprojekte

Image Prüfverfahren zur dynamischen Alterung von Werkstoffen
Image Wasserstoff- und Methan-Versuchsfeld am ILK
Image Innovatives Tieftemperaturkühlsystem zur Rekondensation / Verflüssigung von technischen Gasen bis 77 K
Image Innovativer Helium-Kleinverflüssiger
Image Tribologische Untersuchungen im System Öl-Kältemittel-Werkstoff
Image Innovativer magnetbasierter Parawasserstoffkonverter
Image Dynamische Gebäude- und Anlagensimulation mit TRNSYS
Image Mikrowärmeübertrager in der Kältetechnik
Image Entwicklung eines kryogenen magnetbasierten Luftzerlegers
Image Tieftemperatur-Materialprüfkammer
Image In-Situ-Untersuchungen zum Quellverhalten von Polymerwerkstoffen unter erhöhten Drücken und Temperaturen
Image Thermostatische Expansionsventile
Image Lebensdauerprognose von Hermetikverdichtersystemen
Image Prüfverfahren und Prüfvorrichtungen für ABEK Filterelemente
Image Tieftemperatur-Messdienstleistungen
Image Heliumgewinnung aus Erdgas

Sie befinden sich hier:  Startseite /  Forschung und Entwicklung


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte - Forschung und Entwicklung

Image

Luft-Wasser Wärmepumpen

Prüfungen nach EN 14511 und 14825

Image

Heat2Power

Veredlung der Abwärme von Brennstoffzellen

Image

Nichtinvasive Strömungsmessung

PDPA - Strömungsfelder und Partikelgrößen

Image

Thermische Speicherung mit PCM

Von der Speicheraufgabe zur Anwendung

Image

Rauscharme, nichtmetallische Flüssig-Heliumkryostate

Magnetisch rauscharm für z.B. SQUID-Anwendungen