Aktuelle Forschungsprojekte

Image Wasser-Luft-Kühler-Kit für Helium Kompressoren in der Kryotechnik
Image Verbundvorhaben Öl-Effiziente Kältesysteme – Schmierstoffwahl für Kälteanlagen unter dem Gesichtspunkt der Energieeffizienz
Image Drallfrei unterwegs...
Image Prüfstand für Ventilatoren nach DIN EN ISO 5801
Image Korrosionsinhibitor für Absorptionskälteanlagen
Image ML-basierte Module für intelligente TGA-Planungssoftware
Image Abluftbehandlungsmethode zur Abscheidung von Spurenstoffen in neuen Produktionsverfahren
Image Schalldämpfer mit integrierten Abgaswärmeübertrager
Image Panel mit indirekter Verdunstungskühlung über Membran
Image For(W)ing - Laufradflügel für Strömungsmaschinen
Image Initiierung eines Lithiumkreislaufes – Recycling von Lithiumbromidlösungen aus Absorptionskälteanlagen (ReLiA)
Image Zug- und Druckprüfung
Image In-Situ-Untersuchungen zum Quellverhalten von Polymerwerkstoffen unter erhöhten Drücken und Temperaturen
Image Thermische Kälteerzeugung / Absorptionskältetechnik
Image Reduktion der Schallemission von Darrieus-Windturbinen
Image ZeroHeatPump

Sie befinden sich hier:   /  Startseite


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte

Image

Korrosionsinhibitor für Ammoniak-Absorptions-Anlagen

Eine Alternative zu Chrom(VI)-Verbindungen

Image

Entwicklung eines kryogenen magnetbasierten Luftzerlegers

Angewandte kryogene Magnetohydrodynamik zur Sauerstoffanreicherung

Image

Mollier hx-Diagramm

Prozessdarstellung im hx-Diagramm

Image

Sole (Wasser)-Wärmepumpen

Prüfungen nach EN 14511 und 14825

Image

Software für Prüfstände

Individuelle Software für komplexe Prüfungen und Auswertungen