Current research projects

Image Software for test rigs
Image Investigation of materials
Image Development of a Cryogenic Magnetic Air Separation Unit
Image Innovative cryogenic cooling system for the recondensation / liquefaction of technical gases up to 77 K
Image Air-water heat pumps
Image Solar Cooling
Image In-situ investigation concerning the swelling behaviour of polymer materials under elevated pressures and temperatures
Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr
Image Range of services laboratory analyses
Image Thermostatic Expansion Valves
Image Optimizing HVAC operation with machine learning
Image Electrochemical decontamination of electrically conducting surfaces „EDeKo II“
Image Characterisation of Superconductors in Hydrogen Atmosphere
Image Development of test methods and test rigs for stationary integrated refrigeration units
Image Test method for high - temperature heat pump - oils
Image Innovative Parahydrogen Generator Based on Magnets

You are here:   /  Home


Development of a Cryogenic Magnetic Air Separation Unit

Federal Ministry for Economic Affairs and Climate Action

02/2022-07/2024

Erik Neuber

+49-351-4081-5122

Oxygen Enrichment by Applied Cryogenic Magnetohydrodynamics

Nowadays, for oxygen enrichment from air, various commercial options are available, among other things, pressure swing adsorption, cryogenic rectification, and membranes. Although well-established, most of these methods do have a relative high specific energy demand for small-to-medium production rates (in this context: 0–100 TPD (tonnes per day) of oxygen) and relative high purities (at least 90 vol% of oxygen) [1].

To close this gap, ILK Dresden intends to develop and optimise an efficient cryogenic magnetic air separation unit that enables oxygen enrichment by means of OGMS (open-gradient magnetic separation). Motivated by provisional first-shot experiments, for a first setup, the following parameters are being targeted:

  • Operating pressure: 1–3 bar(a);
  • Degree of purity: 95 vol% oxygen;
  • Production rate: 5 standard l/min oxygen;
  • Specific energy demand: 160–180 kWh/t oxygen;
  • Required time for start-up: 30–60 min;
  • Continuous operation;
  • Less maintenance requirements than pressure swing adsorption;
  • Comparable space requirements as pressure swing adsorption.

Moreover, based on the experimental results, the scalability of the system for higher production rates of up to 100 TPD oxygen shall be analysed.

For this patented technology, ILK Dresden is looking for industrial partners that have interest in financial participation, specific applications, or further developments.

Granted Patent:

DE 10 2021 109 146 A1


Your Request

Further Projects

Image

Investigation of materials

Investigations regarding the compatibility of materials with refrigerants, oils and heat transfer fluids

Image
Image

Non- invasive flow measurements

PDPA - flow fields and particle sizes

Image

Computational fluid dynamics CFD

Scientific analysis of flows