Current research projects

Image Testing of mobile leak detectors according to DIN EN 14624
Image Low Temperature Tribology
Image High temperature heat pump
Image Reduction of primary noise sources of fans
Image Air-flow test rig for fan characteristic measurement
Image Low Temperature Measuring Service
Image Solar Cooling
Image All-in-one device for freeze-drying and production of biomaterial
Image Corrosion inhibitor for ammonia absorption systems
Image Performance tests of refrigerant compressors
Image Electrical components in refrigeration circuits
Image Cold meter
Image Non- invasive flow measurements
Image Electrochemical decontamination of electrically conducting surfaces „EDeKo II“
Image Characterisation of Superconductors in Hydrogen Atmosphere
Image Development of a Cryogenic Magnetic Air Separation Unit

You are here:   /  Home


Development of a Cryogenic Magnetic Air Separation Unit

Federal Ministry for Economic Affairs and Climate Action

02/2022-07/2024

Erik Neuber

+49-351-4081-5122

Oxygen Enrichment by Applied Cryogenic Magnetohydrodynamics

Nowadays, for oxygen enrichment from air, various commercial options are available, among other things, pressure swing adsorption, cryogenic rectification, and membranes. Although well-established, most of these methods do have a relative high specific energy demand for small-to-medium production rates (in this context: 0–100 TPD (tonnes per day) of oxygen) and relative high purities (at least 90 vol% of oxygen) [1].

To close this gap, ILK Dresden intends to develop and optimise an efficient cryogenic magnetic air separation unit that enables oxygen enrichment by means of OGMS (open-gradient magnetic separation). Motivated by provisional first-shot experiments, for a first setup, the following parameters are being targeted:

  • Operating pressure: 1–3 bar(a);
  • Degree of purity: 95 vol% oxygen;
  • Production rate: 5 standard l/min oxygen;
  • Specific energy demand: 160–180 kWh/t oxygen;
  • Required time for start-up: 30–60 min;
  • Continuous operation;
  • Less maintenance requirements than pressure swing adsorption;
  • Comparable space requirements as pressure swing adsorption.

Moreover, based on the experimental results, the scalability of the system for higher production rates of up to 100 TPD oxygen shall be analysed.

For this patented technology, ILK Dresden is looking for industrial partners that have interest in financial participation, specific applications, or further developments.

Granted Patent:

DE 10 2021 109 146 A1


Your Request

Further Projects

Image

Heat2Power

Refining of fuel cell waste heat

Image

Reducing the filling quantity

How much refrigerant must be filled?

Image

Performance tests of condensing units

Does your condensing unit perform well?

Image

State of system and failure analyses

Cause of the failure unknown?