Current research projects

Image Test method for high - temperature heat pump - oils
Image Performance tests of refrigerant compressors
Image Low temperature – test facilities
Image Energy efficiency consulting - cogeneration systems
Image Influenced melting point of water by magnetic field
Image Innovative Parahydrogen Generator Based on Magnets
Image Solar Cooling
Image Calibration leak for the water bath leak test
Image Reducing the filling quantity
Image Measurements on ceiling mounted cooling systems
Image Software for technical building equipment
Image Helium extraction from natural gas
Image Innovative Manufacturing Technologies for Cryosorption Systems
Image Micro fluidic expansion valve
Image Test rigs for refrigeration and heat pump technology
Image Thermostatic Expansion Valves

You are here:   /  Home


Low noise and non metallic liquid-helium cryostat

Industry and Research Institutes

Dr. rer. nat. Andreas Kade

+49-351-4081-5117

Low-noise Magnetic Field Cryostat for SQUID-Applications

Technical Data for the Cryostats

parametervalue
volume of liquid helium5 to 12 litre (other volume possible)
time to complete evaporation of helium3 to 7 days (depends on size)
heat load0.1 W (in standby operation)
rate of helium evaporation≤ 3 litre / day
holding time of the liquid heliumup to 4 days without refilling
initial noise of the cryostat< 3 fT / Hz½
helium leak test (He-vessel)< 1 × 10-11 mbar l / s

ILK Dresden developed low noise magnetic field and non metallic helium cryostats made of GRP (glass reinforced plastics) with a high helium and vacuum holding time.

The cryostats can operate in a direction independent operation mode (tiltable arrangement) and hence they are suitable for a plurality of several applications.

The ILK concept offers much lower permeation rates inside the He-reservoir as comparable models from other manufacturers and is therefore perfect for SQUID (superconducting quantum interference device) applications and other long-term measurements.
 
The technical design of the cryostats is thus predestined for future sensor generation.

Specification

  • suitable for the cooling of SQUID-Sensors
  • non-metallic (GRP)
  • fast filling with LHe via thermosiphon
  • GRP exhaust gas cooled radiation shield for high efficiency.
  • small cold-warm distance feasible
  • low maintenance 
  • other design variants possible on costumer request

Low noise magnetic field

The low-noise magnetic field of the cryostat was tested in the magnetically shielded room BMSR-1 of PTB Berlin and is smaller than the lowest resolution limit of the measurement system used, see figure below.


Your Request

Further Projects

Image

Heat2Power

Refining of fuel cell waste heat

Image

Reducing the filling quantity

How much refrigerant must be filled?

Image

Performance tests of condensing units

Does your condensing unit perform well?

Image

State of system and failure analyses

Cause of the failure unknown?