Current research projects

Image Reduction of primary noise sources of fans
Image Helium extraction from natural gas
Image Low Temperature Tribology
Image Refrigerants, lubricants and mixtures
Image Swirl-free on the move...
Image Laseroptical measurement
Image Test method for high - temperature heat pump - oils
Image Micro fluidic expansion valve
Image Non- invasive flow measurements
Image CO₂ GAS HYDRATES FOR SUSTAINABLE ENERGY AND COOLING SOLUTIONS
Image CFE-Test of Cooker Hoods
Image Investigation of material-dependent parameters
Image Innovative Parahydrogen Generator Based on Magnets
Image Preformance measurements of heat exchangers
Image Air-flow test rig for fan characteristic measurement
Image Low noise and non metallic liquid-helium cryostat

You are here:  Home /  Measurements and Tests


Development of test methods and test rigs for stationary integrated refrigeration units

BMWi Euronorm Innokom

02/2017 – 07/2019

Andreas Peusch

+49-351-4081-5221

How efficient is my refrigeration unit?

The objective of the R&D project was the development of a test method for stationary integrated refrigeration units. The test method comprises different device variants, like ceiling mounted, wall mounted or split refrigeration units. The method provides reliable performance data and thus enables a manufacturer-independent efficiency comparison.

Measurements in the 3- or 4-chamber measurement setup were carried out using the calorimeter method with compensation of the ambient conditions. This enabled the measurements of devices with low cooling capacity (0.5 - 4 kW).

In the selected test setup (Figure 1), the cooling capacity is measured indirectly via an electrical power of the compensation heating. To determine the total cooling capacity, the heat input into the calorimeter room and, if necessary, internal loads (sensible and latent heat) have to be added together.

The test method comprises following features:

  • Suitable for low temperature devices (-20 °C) and normal temperature cooling (0 °C)
  • Measurement in the calorimeter room (3- or 4-zone concept)
  • Determination of heat input via enclosure surfaces before power measurement
  • Establishment of equilibrium conditions (settling phase) of the temperatures to be set (up to 24 h)
  • Measuring period up to 6 h with permissible tolerance band of 0.2 K

Conclusion:

  • Results were included in new test standard prEN 17432
  • Establishment of a uniform Europe-wide comparison criterion
  • Performance and efficiency data on a uniform basis leads to higher confidence and thus also to lower consumption costs

Your Request

Further Projects - Measurements and Tests

Image

Tribological investigations of oil-refrigerant-material-systems

Modified Almen-Wieland wear testing machine

Image

Electrical components in refrigeration circuits

High voltage tests under real conditions

Image

Investigation of materials

Investigations regarding the compatibility of materials with refrigerants, oils and heat transfer fluids

Image