Current research projects

Image High Capacity Pulse Tube Cooler
Image Tensile and compression testing
Image Thermostatic Expansion Valves
Image Pulse-Tube-Refrigerator with sealed compressor
Image Multifunctional electronic modules for cryogenic applications
Image In-Situ-Swelling Behaviour of Polymer Materials in Flammable Fluids
Image Mass Spectrometer
Image Ice Slurry Generation
Image Measurements on ceiling mounted cooling systems
Image Air-flow test rig for fan characteristic measurement
Image Practical training, diploma, master, bachelor
Image Corrosion inhibitor for ammonia absorption systems
Image Certifiable connection types in cryogenics
Image Combined building and system simulation
Image Low noise and non metallic liquid-helium cryostat
Image Swirl-free on the move...

You are here:  Home /  Research and Development


Behavior of multiphase cryogenic fluids

Matthias Schneider

+49-351-4081-5126

experimental und numerical investigations

With the help of this basic research project, processes that occur during the sudden evaporation of cryogenic media should be better understood, described and evaluated. This should create possibilities for improved design and efficient operation of safety elements and power transmitting components in plants with cryogenic media.
A well-founded theoretical understanding of the dynamic calculation and evaluation of boiling cryogenic media will be developed. In order to obtain, for example, a concrete component behaviour under cryogenic conditions, numerical descriptions are required beyond the design calculations, both for fluid dynamics and for the spatial and temporal change in temperature.
Parallel to this, the experimental basis for the design of complex cryogenic components and systems engineering is being improved.
The objectives and results of the preliminary research project include

  • Calculated parameters from various numerical simulations for essential cryogenic components
  • Extensive experimental results for variations of the underlying geometry, advantageous process control, improved design of components
  • Basic thermodynamic processes in gas chillers
  • Calculation algorithms for the description of dynamic heat transport phenomena
  • Evaluation of critical plant conditions
  • Suitable materials for cryostat components and cryogenic plants
  • Novel components e.g. for small helium mass flows

An application project for the development of heat exchangers for cryogenic multiphase fluids is planned.

Video of the mass transfer rate between the liquid and the vapour phase inside a Venturi tube

If you can not see the video, please use the external link to YouTube.


Your Request

Further Projects - Research and Development

Image

Development of a Cryogenic Magnetic Air Separation Unit

Oxygen Enrichment by Applied Cryogenic Magnetohydrodynamics

Image

Brine (water)-water heat pump

Test according DIN EN 14511 and 14825

Image

Air-water heat pumps

Test according DIN EN 14511 and 14825

Image

High temperature heat pump

Using waste heat from industrial processes

Image

Micro heat exchangers in refrigeration

3D-printing of micro heat exchangers