Current research projects

Image In-Situ-Swelling Behaviour of Polymer Materials in Flammable Fluids
Image Performance tests of condensing units
Image Thermostatic Expansion Valves
Image Reduction of primary noise sources of fans
Image Hydrogen and methane testing field at the ILK
Image Helium extraction from natural gas
Image High Capacity Pulse Tube Cooler
Image Laseroptical measurement
Image Certifiable connection types in cryogenics
Image Breakthrough Sensor for Adsorption Filters (BelA)
Image Innovative Manufacturing Technologies for Cryosorption Systems
Image Innovative Parahydrogen Generator Based on Magnets
Image Low Temperature Measuring Service
Image ZeroHeatPump
Image Combined building and system simulation
Image Lifetime prediction of hermetic compressor systems

You are here:  Home /  Research and Development


Low temperature – test facilities

Industry and research instituts

Gunar Schroeder

+49-351-4081-5129

thermal cycling tests at very low temperatures

Parts and components of machines such as satellites or space telescopes are subject to mechanical stress. In addition to the mechanical stress, the temperatures at which these components are used also have an influence on their strength and thus also on their lifetime. In the area of materials research, material aging and especially for space applications with the very high temperature changes that occur in a vacuum, temperature change tests are essential. These tests normally are combined with subsequent strength testing. With the knowledge gained, e.g. how the component strength changes due to extreme temperature changes, the components can be optimally designed with regard to the special requirements for reliability and minimum weight.

A test chamber has been build up at the ILK Dresden specifically for such temperature change tests. With the help of this thermal cycling chamber, parts or components can be exposed to changing temperatures for different durations. The temperatures can be specified in the range of 20 – 363 K for defined time intervals. The temperature gradients, performing the change from the lowest temperature to the highest temperature or reverse can also be specified in a range. Using a programmable electronic control, temperature profiles can be defined and run through in automated test operation over several hours to several days.

Sample limits Parameter
Temperature range 20 K ... 363 K / -253°C ... +90°C / -423°F ... 194°F
Temperature stability ± 1 K
Dimension, length x width 0,95 m x 0,6 m / 3 ft x 2 ft
Mass up to 30 kg / 66 lb

 


Your Request

Further Projects - Research and Development

Image

Certifiable connection types in cryogenics

Detachable and permanent connections, adhesive bond / form closure / force closure

Image

Combined building and system simulation

Scientific analysis of thermodynamic processes in buildings and its systems

Image

Heat2Power

Refining of fuel cell waste heat

Image

Reducing the filling quantity

How much refrigerant must be filled?