Current research projects

Image Low noise and non metallic liquid-helium cryostat
Image Filter Tests
Image IO-Scan - Integral measuring optical scanning method
Image ZeroHeatPump
Image Air-flow test rig for fan characteristic measurement
Image Humidifier System for High-Purity Gases
Image Certification of efficient air conditioning and ventilation systems through the new "indoor air quality seal" for non-residential buildings
Image Tensile and compression testing
Image Verification of storage suitability of cryo tubes
Image Investigation of materials
Image High temperature heat pump
Image Brine (water)-water heat pump
Image Intelligent innovative power supply for superconducting coils
Image Reducing the filling quantity
Image Pulse-Tube-Refrigerator with sealed compressor
Image Investigation of coolants

You are here:  Home /  Research and Development


Hydrogen and methane testing field at the ILK

BMWi

Dr. Andreas Kade

+49-351-4081-5117

Simultaneously pressures up to 1,000 bar, temperatures down to –253°C

ILK Dresden operates an innovative testing ground for cryogenic high-pressure applications with hydrogen (H2), methane (CH4), and methane–hydrogen mixtures. With this, different services can be offered, among other things:

  • Test and qualification of components at temperatures ranging from 20 K (−253 °C) to room temperature and pressures ranging from high vacuum to 1000 bar (e.g. test of sealings, permeation tests).
  • Investigation of charge and discharge processes at cryogenic or room-temperature-operated storage systems for hydrogen and methane (e.g. adsorber storage systems, cryo-compressed hydrogen).
  • Investigation of catalyst materials for the ortho–para conversion of hydrogen.
  • Long-time thermal charging of components and materials in hydrogen or methane atmosphere at up to +200 °C and up to 160 bar for investigating degradation effects (e.g. hydrogen embrittlement).
  • Development of different hydrogen and methane components (e.g. recooling systems, latent-heat storage systems, cryogenic pressure storage systems, heat exchangers, cryogenic pumps).
  • Realisation of complete-system solutions for hydrogen and methane.

The following diagram depicts the specific storage density that can be achieved depending on temperature and pressure:


Your Request

Further Projects - Research and Development