Current research projects

Image Helium extraction from natural gas
Image Brine (water)-water heat pump
Image Hydrogen and methane testing field at the ILK
Image Calibration leak for the water bath leak test
Image Preformance measurements of heat exchangers
Image Thermostatic Expansion Valves
Image Development of a Cryogenic Magnetic Air Separation Unit
Image Hybrid- Fluid for CO2-Sublimation Cycle
Image Laseroptical measurement
Image Solar Cooling
Image In-situ investigation concerning the swelling behaviour of polymer materials under elevated pressures and temperatures
Image Service offer for Leak Detection and Tightness Test
Image Energy efficiency consulting - cogeneration systems
Image Filter Tests
Image State of system and failure analyses
Image Investigation according to DIN EN ISO 14903

You are here:  Home /  Research and Development


Innovative Parahydrogen Generator Based on Magnets

Euronorm GmbH

Erik Neuber

+49-351-4081-5122

Magnetic Gas Separation of the Hydrogen Isomers

Molecular hydrogen occurs in two isomeric forms which differ in their configuration of the nuclear spin: orthohydrogen and parahydrogen, whereas the latter accounts for only 25% of the whole gas at room temperature. Contrary to this, parahydrogen in its concentrated form is utilised especially for hyperpolarisation (so-called PHIP – Parahydrogen Induced Polarisation), which is a widespread method in the fields of medicine and chemistry to enhance the contrast of MRI and NMR apparatus.
However, all procedures for the production of this spin isomer are based upon cryogenic methods, which have comparatively high expenses for energy and maintenance. Because of this, there exists the demand for a cheap and efficient method to enrich parahydrogen for direct use in successive applications.

Project Goals

  • Development of an innovative ortho–para converter, which works at room temperature by using the principle of magnetic gas separation;
  • Measurement of the separation ability of the chosen principle at room temperature and optimisation of the resulting effect and
  • Enrichment up to 99% of parahydrogen at a variable volume flow (pursued are at least 4 standard litres per minute).

Your Request

Further Projects - Research and Development

Image

Thermal engines

Power Generation from Waste Heat

Image

Helium extraction from natural gas

Innovative solutions for helium extraction

Image

Ice Slurry Generation

Using Direct Evaporation

Image

Pulse-Tube-Refrigerator with sealed compressor

for mobil use in the hydrogen technology

Image

Low Temperature Measuring Service

Measurement of Thermal Properties at Low Temperatures