Aktuelle Forschungsprojekte

Image Cryostats, Non-Metallic and Metallic
Image Thermostatic Expansion Valves
Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr
Image Computational fluid dynamics CFD
Image Thermal engines
Image 3D - Air flow sensor
Image Hydrogen and methane testing field at the ILK
Image Innovative small helium liquefier
Image Verification of storage suitability of cryo tubes
Image Pulse-Tube-Refrigerator with sealed compressor
Image Innovative Manufacturing Technologies for Cryosorption Systems
Image Behavior of multiphase cryogenic fluids
Image Heat2Power
Image Brine (water)-water heat pump
Image Low Temperature Measuring Service
Image Solar Cooling

You are here:  Home /  Software Development


Multifunctional electronic modules for cryogenic applications

Euronorm GmbH

Dr. Norbert Gust

+49-351-4081-5112

Electronic with less wiring effort - more than 100 sensors via one feedthrough

The aim of the R&D project was the development of multifunctional electronic modules that enable the operation of a large number and variety of sensors to be used for cryogenic applications.

Usually, cryogenic sensors are located in cryostats and all cables have to be decoupled via feedthroughs, which leads to an increased heat input. To avoid this, we have developed and implemented various multiplexers as a part of the project, which work well under cryogenic conditions, see Figure 1 (left). The multiplexers are designed for an operation with a 10-wire bus system with arbitrary expandability. The multiplexers were developed and optimized for minimum interference, maximum function and compactness.

Another major goal of the R&D project was the development of a universal measuring bridge for any sensors, see Figure 1 (right). As a result, different electronic multifunction modules and cold multiplexers were developed, realized and validated. These modules are characterized by the fact that any sensors can be connected by means of a universal circuit board design. The selection of the modules was modular, which is why special components were selected and tested depending on the requirements. Among the options are: Different references (resistance, voltage), amplification factors, active shielding, battery operation, displays (TFT, LCD), interfaces (RS485, USB), storage options (SD card), electrical isolation, interface to multiplexers, and type of housing.

During development, special attention was paid to electromagnetic compatibility and interference sensitivity during switching operations, such as in heater control. The accuracy is determined by reference resistors and voltages. In addition, the time response of the facial expressions was a key parameter of the development in order to ensure a fast and stable measurement.

Within the R&D project a software was programmed which is available as a universal platform for any configuration of modules. The modules can be in-house developments or commercially available products. Each controller supports a freely definable number of sensors, actuators, controllers and binary inputs and outputs. Each sensor, actuator and controller can represent any common physical quantity. These include temperature, pressure, level, voltage, current, resistance etc.

With our development of a universal temperature measuring bridge, any temperature sensors can be read out with high accuracy, see Figure 2.


Your Request

Further Projects - Software Development

Image

Software for test rigs

Individual software for complex tests and evaluation

Image

Computational fluid dynamics CFD

Scientific analysis of flows

Image

Combined building and system simulation

Scientific analysis of thermodynamic processes in buildings and its systems

Image

Reducing the filling quantity

How much refrigerant must be filled?

Image

Optimizing HVAC operation with machine learning

Intelligent control of HVAC systems – high comfort with low energy demand