Current research projects

Image Brine (water)-water heat pump
Image Innovative Manufacturing Technologies for Cryosorption Systems
Image Pulse-Tube-Refrigerator with sealed compressor
Image Filter Tests
Image Refrigerants, lubricants and mixtures
Image Modular storage system for solar cooling
Image Industry 4.0 membrane heat and mass exchanger (i-MWÜ4.0)
Image Low Temperature Tribology
Image Cold meter
Image High temperature heat pump
Image Investigation of material-dependent parameters
Image Heat2Power
Image Influenced melting point of water by magnetic field
Image Software for test rigs
Image High Capacity Pulse Tube Cooler
Image In-situ investigation concerning the swelling behaviour of polymer materials under elevated pressures and temperatures

You are here:  Home /  Software Development


Optimizing HVAC operation with machine learning

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in progress

Intelligent control of HVAC systems – high comfort with low energy demand

Motivation

During operation, the energy efficiency of many HVAC systems remains considerably below the value predicted when planning. One reason is that especially complex systems with multiple generators, storages and consumer locations frequently are not operated optimally.

Aim of the project

Development of a tool for optimizing the operation of HVAC systems which uses machine learning (ML) methods and data from the digital building model (Building Information Model, BIM):

  • Optimization goal: high energy efficiency with at the same time high comfort for users

  • Saving operating costs, energy and carbon dioxide emissions due to increased efficiency

  • Continuous autonomous improvement of the ML algorithm by learning from new measured data with auto-adaptive reaction to changing conditions (building, system, use, smart meter for real time billing of energy and media, etc.)

Approach

  • Reproduction of the real system’s thermal-energetic behaviour in the machine learning system, training with BIM data, measured data and a digital twin of the real system
  • Application of ML methods for load forecasting (weather, usage patterns)

  • Automatic classification of utilisation scenarios, fault detection

  • Integration of available tools for efficient simulation of indoor air flows and for calculating energy demands

  • Co-Validation of optimization tool, experimental studies and digital twin

Interested?

Please get in touch with us if you are interested in a cooperation: klima@ilkdresden.de

 


Your Request

Further Projects - Software Development

Image

Software for test rigs

Individual software for complex tests and evaluation

Image

Computational fluid dynamics CFD

Scientific analysis of flows

Image

Multifunctional electronic modules for cryogenic applications

Electronic with less wiring effort - more than 100 sensors via one feedthrough