Image Energy efficiency consulting - cogeneration systems
Image Measurement of insulated packaging
Image Cryostats, Non-Metallic and Metallic
Image Hydrogen and methane testing field at the ILK
Image Electrochemical decontamination of electrically conducting surfaces „EDeKo II“
Image Electrical components in refrigeration circuits
Image Refrigerants, lubricants and mixtures
Image Swirl-free on the move...
Image Low Temperature Tribology
Image Multifunctional electronic modules for cryogenic applications
Image Investigation of coolants
Image Filter Tests
Image High temperature heat pump
Image Micro fluidic expansion valve
Image Reducing the filling quantity
Image High Capacity Pulse Tube Cooler

You are here:  Home /  Software Development


Optimizing HVAC operation with machine learning

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-684

in progress

Intelligent control of HVAC systems – high comfort with low energy demand

Motivation

During operation, the energy efficiency of many HVAC systems remains considerably below the value predicted when planning. One reason is that especially complex systems with multiple generators, storages and consumer locations frequently are not operated optimally.

Aim of the project

Development of a tool for optimizing the operation of HVAC systems which uses machine learning (ML) methods and data from the digital building model (Building Information Model, BIM):

  • Optimization goal: high energy efficiency with at the same time high comfort for users

  • Saving operating costs, energy and carbon dioxide emissions due to increased efficiency

  • Continuous autonomous improvement of the ML algorithm by learning from new measured data with auto-adaptive reaction to changing conditions (building, system, use, smart meter for real time billing of energy and media, etc.)

Approach

  • Reproduction of the real system’s thermal-energetic behaviour in the machine learning system, training with BIM data, measured data and a digital twin of the real system
  • Application of ML methods for load forecasting (weather, usage patterns)

  • Automatic classification of utilisation scenarios, fault detection

  • Integration of available tools for efficient simulation of indoor air flows and for calculating energy demands

  • Co-Validation of optimization tool, experimental studies and digital twin

Interested?

Please get in touch with us if you are interested in a cooperation: klima@ilkdresden.de

 


Your Request

Further Projects - Software Development

Image

Computational fluid dynamics CFD

Scientific analysis of flows

Image

Combined building and system simulation

Scientific analysis of thermodynamic processes in buildings and its systems

Image

Reducing the filling quantity

How much refrigerant must be filled?

Image

Software modules

Software for properties of refrigerants

Image

Software for test rigs

Individual software for complex tests and evaluation


Contact

Institut für Luft- und Kältetechnik - Gemeinnützige Gesellschaft mbH
Bertolt-Brecht-Allee 20, 01309 Dresden


Secretary to the Management

+49-351-4081-520

+49-351-4081-525

Image ISO 9001
Bild Zuse Mitglied Bild SIG