Current research projects

Image Test rigs for refrigeration and heat pump technology
Image Test procedures for electrical components
Image Hydrogen and methane testing field at the ILK
Image Multifunctional electronic modules for cryogenic applications
Image Air-water heat pumps
Image Air-flow test rig for fan characteristic measurement
Image Certification of efficient air conditioning and ventilation systems through the new "indoor air quality seal" for non-residential buildings
Image Innovative small helium liquefier
Image Low temperature – test facilities
Image Test method for high - temperature heat pump - oils
Image Thermostatic Expansion Valves
Image Cool Up
Image Verification of storage suitability of cryo tubes
Image CFE-Test of Cooker Hoods
Image Low Temperature Tribology
Image Development of a Cryogenic Magnetic Air Separation Unit

You are here:  Home /  Testing Equipment


Pulse-Tube-Refrigerator with sealed compressor

Federal Ministry of Economics and Energy

Dipl.-Ing. Gunar Schroeder

+49-351-4081-5129

for mobil use in the hydrogen technology

Within the research project "Mobile single-stage pulse tube cooler with hermetic compressor drive" (project number MF 130012), a compact, robust and low-maintenance cryocooler was developed.
Possible applications for this cryocooler, e.g.,

  • Cooling of mobile high-pressure tanks for storing fuels in cryogenic liquid or supercritical state (e. g. H2 – cryogenic under high pressure)
  • mobile cooling applications < –40°C in medical technology, transport of organic material or samples

The system has a simple and cost-effective design with the following advantages:

  • Mobile use, supply voltage 12 V or 24 V, air-cooled
  • Supply of cryogenic temperatures in the range 60...120 K
  • Low maintenance and long-life, no moving parts in the cold part
  • Programmable temperature curves via microcontroller-based control
  • Low power consumption, in the range of 500 W
  • Low space requirement, arrangement can be adapted
  • Lower costs control through extensive use of commercial components

Figure 1 shows the experimental setup of the cryocooler in a specially adapted orifice double inlet configuration. With the use of a special valve control, 2 W cooling capacity at 77 K and 5 W at 90 K could be achieved. The lowest temperature reached with this single-stage configuration was 68 K. The temperature stability of the system was validated in a test lasting 100 h, see figure 2. In further investigations with a specially adapted compressor, even lower temperatures are to be achieved, down to 40 K.

We are looking for industrial partners for adaptations for special application purposes or possible further developments. Conceivable are, for example, a compact system suitable for use in motor vehicles in a functional housing with the necessary interfaces or a further development of the current cooler to achieve higher cooling capacity, lower temperatures and higher efficiency.


Your Request

Further Projects - Testing Equipment

Image

Innovative small helium liquefier

Liquefaction rates from 10 to 15 l/h

Image

Micro fluidic expansion valve

for increasing of the efficiency of small and compact cooling units

Image

Solar Cooling

Solar Cooling with Photovoltaic

Image

Low noise and non metallic liquid-helium cryostat

Low-noise Magnetic Field Cryostat for SQUID-Applications