Aktuelle Forschungsprojekte

Image Elektrochemische Dekontamination leitfähiger Oberflächen „EDeKo II“
Image Kalibrierung von Tieftemperatursensoren
Image Cool Up
Image Abluftbehandlungsmethode zur Abscheidung von Spurenstoffen in neuen Produktionsverfahren
Image Verbundvorhaben Öl-Effiziente Kältesysteme – Schmierstoffwahl für Kälteanlagen unter dem Gesichtspunkt der Energieeffizienz
Image Cl.Ai.Co - Clever Air Components
Image Kältemengenzähler
Image Prüfstände für Kälte- und Wärmepumpentechnik
Image Mikrowärmeübertrager in der Kältetechnik
Image For(W)ing - Laufradflügel für Strömungsmaschinen
Image Textiler Wärme- und Stoffübertrager in KVS-Systemen
Image RauMLuft.ROM | ROM - basierte Vorhersage von Raumluftströmungen mit maschinellem Lernen
Image Heat2Power
Image Schalldämpfer mit integrierten Abgaswärmeübertrager
Image Elektrische Auskopplung aus einer Expansionsturbine
Image Wasserstoff- und Methan-Versuchsfeld am ILK

Sie befinden sich hier:   /  Startseite


Innovativer magnetbasierter Parawasserstoffkonverter

4701

Molekularer Wasserstoff existiert in Form zweier verschiedener Isomere, welche sich durch die Konfiguration des Kernspins unterscheiden: Ortho- und Parawasserstoff, wobei letzterer bei Raumtemperatur nur 25% des Gesamtgases ausmacht. Zugleich wird Parawasserstoff in konzentrierter Form insbesondere in der Medizin und Chemie zur weitverbreiteten Methode der Hyperpolarisation (sog. PHIP – Parawasserstoff-induzierte Polarisation) genutzt, welche in MRT- bzw. NMR-Anlagen zur Kontraststeigerung zum Einsatz kommt.
Die Standardverfahren zur Herstellung dieses Spin-Isomers basieren jedoch allesamt auf kryogenen Methoden, welche einen verhältnismäßig hohen Energie- und Wartungsaufwand besitzen. Von daher besteht der Bedarf nach einer kostengünstigen und effizienten Möglichkeit zur Anreicherung von Parawasserstoff bei Raumtemperatur, so dass dieser im Anschluss direkt weiter verwendet werden kann.

Projektziele

  • Entwicklung eines innovativen Ortho-Para-Konverters, welcher bei Raumtemperatur nach dem Prinzip der magnetischen Gasseparation arbeitet;
  • Vermessung der Separationsfähigkeit des ausgewählten Prinzips bei Raumtemperatur und Optimierung des resultierenden Effektes sowie
  • Anreicherung auf 99% Parawasserstoff bei variablem Volumenstrom (mindestens 4 Standard-Liter pro Minute).

Ihre Anfrage