Aktuelle Forschungsprojekte

Image Mikrowärmeübertrager in der Kältetechnik
Image Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen
Image Initiierung eines Lithiumkreislaufes – Recycling von Lithiumbromidlösungen aus Absorptionskälteanlagen (ReLiA)
Image Panel mit indirekter Verdunstungskühlung über Membran
Image RauMLuft.ROM | ROM - basierte Vorhersage von Raumluftströmungen mit maschinellem Lernen
Image Prüfung mobiler Leckdetektoren nach DIN EN 14624
Image For(W)ing - Laufradflügel für Strömungsmaschinen
Image Luft-Wasser Wärmepumpen
Image Praktikum, Diplom, Master, Bachelor
Image Drallfrei unterwegs...
Image Innovativer Helium-Kleinverflüssiger
Image Aktives Schichtladesystem für Kaltwasserpufferspeicher
Image Wetterschutzhaube mit integrierter nachhaltiger Kühlfunktion | NaKu-WSH
Image Hochtemperatur - Korrosionsinhibitoren zur Sicherung der Erweiterung des Anwendungsbereiches Abwärme nutzender Kälteerzeugung
Image ML-basierte Module für intelligente TGA-Planungssoftware
Image Dynamische Gebäude- und Anlagensimulation mit TRNSYS

Sie befinden sich hier:   /  Startseite


Innovativer magnetbasierter Parawasserstoffkonverter

4701

Molekularer Wasserstoff existiert in Form zweier verschiedener Isomere, welche sich durch die Konfiguration des Kernspins unterscheiden: Ortho- und Parawasserstoff, wobei letzterer bei Raumtemperatur nur 25% des Gesamtgases ausmacht. Zugleich wird Parawasserstoff in konzentrierter Form insbesondere in der Medizin und Chemie zur weitverbreiteten Methode der Hyperpolarisation (sog. PHIP – Parawasserstoff-induzierte Polarisation) genutzt, welche in MRT- bzw. NMR-Anlagen zur Kontraststeigerung zum Einsatz kommt.
Die Standardverfahren zur Herstellung dieses Spin-Isomers basieren jedoch allesamt auf kryogenen Methoden, welche einen verhältnismäßig hohen Energie- und Wartungsaufwand besitzen. Von daher besteht der Bedarf nach einer kostengünstigen und effizienten Möglichkeit zur Anreicherung von Parawasserstoff bei Raumtemperatur, so dass dieser im Anschluss direkt weiter verwendet werden kann.

Projektziele

  • Entwicklung eines innovativen Ortho-Para-Konverters, welcher bei Raumtemperatur nach dem Prinzip der magnetischen Gasseparation arbeitet;
  • Vermessung der Separationsfähigkeit des ausgewählten Prinzips bei Raumtemperatur und Optimierung des resultierenden Effektes sowie
  • Anreicherung auf 99% Parawasserstoff bei variablem Volumenstrom (mindestens 4 Standard-Liter pro Minute).

Ihre Anfrage