Aktuelle Forschungsprojekte

Image Gesamtsystemoptimierung von Kältetechnischen Anlagensystemen für Energiewende und Klimaschutz
Image Korrosionsinhibitor für Absorptionskälteanlagen
Image Untersuchung von materialabhängigen Parametern
Image Kryoflüssigkeitspumpen für tiefkalt verflüssigte Gase wie z.B. LIN, LOX, LHe, LH2, LNG, LAr
Image ML-basierte Module für intelligente TGA-Planungssoftware
Image Prüfbad-Haube
Image Zertifizierung von effizienten Klima- und Lüftungsanlagen durch das neue „Qualitätssiegel Raumlufttechnik“ für Nichtwohngebäude
Image Thermosyphon mit in situ beschichtetem Verdampfer
Image Leistungsangebot der Lecksuche und Dichtheitsprüfung
Image Prüfstand für Ventilatoren nach DIN EN ISO 5801
Image Kälte-Erzeugung und Kältespeicherung
Image ZeroHeatPump
Image Industrie-4.0-Membran-Wärme-und-Stoffübertrager (i-MWÜ4.0)
Image CO₂ GASHYDRATE FÜR NACHHALTIGE ENERGIE- UND KÜHLLÖSUNGEN
Image Elektrische Auskopplung aus einer Expansionsturbine
Image Verhalten mehrphasiger kryogener Fluide

Sie befinden sich hier:   /  Startseite


Wasserstoff- und Methan-Versuchsfeld am ILK

BMWi

Dr. rer. nat. Andreas Kade

+49-351-4081-5117

Gleichzeitig Drücke bis 1000 bar, Temperaturen bis –253°C

Am ILK Dresden wird ein innovatives Versuchsfeld für kryogene Hochdruckanwendungen mit Wasserstoff (H2), Methan (CH4) und Methan-Wasserstoff-Gemischen betrieben. Dieses ermöglicht die Durchführung verschiedener Dienstleistungen, unter anderem:

  • Bauteiltests und ‑qualifizierungen bei Temperaturen von 20 K (−253 °C) bis Raumtemperatur und gleichzeitig Drücken von Hochvakuum bis 1000 bar (bspw. Dichtungstests und Permeationstests).
  • Untersuchung von Be- und Entladevorgängen an kryogenen oder bei Raumtemperatur betriebenen Wasserstoff- und Methanspeichern (bspw. Adsorberspeicher und kryokomprimierter Wasserstoff).
  • Untersuchung von Katalysatoren für die Ortho-Para-Umwandlung von Wasserstoff.
  • Langzeitauslagerung von Bauteilen und Komponenten in Wasserstoff- oder Methanatmosphäre bei bis zu +200 °C und 160 bar zur Untersuchung von Degradationseffekten (bspw. Wasserstoffversprödung).
  • Neu- und Weiterentwicklung von verschiedenen Wasserstoff- und Methan-Komponenten (bspw. Rückkühlsysteme, Latentwärmespeicher, kryogene Druckspeicher, Wärmeübertrager und kryogene Pumpen).
  • Realisierung von Gesamtsystemen für Wasserstoff und Methan.

Das folgende Diagramm zeigt die Wasserstoff-Speicherdichte in Abhängigkeit von Druck und Temperatur:


Ihre Anfrage zum Projekt