Current research projects

Image Service offer for Leak Detection and Tightness Test
Image Development of test methods and test rigs for stationary integrated refrigeration units
Image Reduction of primary noise sources of fans
Image Combined building and system simulation
Image Testzentrum PLWP at ILK Dresden
Image Solar Cooling
Image In-Situ-Swelling Behaviour of Polymer Materials in Flammable Fluids
Image Innovative Parahydrogen Generator Based on Magnets
Image Innovative cryogenic cooling system for the recondensation / liquefaction of technical gases up to 77 K
Image Pulse-Tube-Refrigerator with sealed compressor
Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr
Image Software for technical building equipment
Image In-situ investigation concerning the swelling behaviour of polymer materials under elevated pressures and temperatures
Image Hydrogen and methane testing field at the ILK
Image IO-Scan - Integral measuring optical scanning method
Image Calibration of Low Temperature Sensors

You are here:   /  Home


Development of a Cryogenic Magnetic Air Separation Unit

Federal Ministry for Economic Affairs and Climate Action

02/2022-07/2024

Erik Neuber

+49-351-4081-5122

Oxygen Enrichment by Applied Cryogenic Magnetohydrodynamics

Nowadays, for oxygen enrichment from air, various commercial options are available, among other things, pressure swing adsorption, cryogenic rectification, and membranes. Although well-established, most of these methods do have a relative high specific energy demand for small-to-medium production rates (in this context: 0–100 TPD (tonnes per day) of oxygen) and relative high purities (at least 90 vol% of oxygen) [1].

To close this gap, ILK Dresden intends to develop and optimise an efficient cryogenic magnetic air separation unit that enables oxygen enrichment by means of OGMS (open-gradient magnetic separation). Motivated by provisional first-shot experiments, for a first setup, the following parameters are being targeted:

  • Operating pressure: 1–3 bar(a);
  • Degree of purity: 95 vol% oxygen;
  • Production rate: 5 standard l/min oxygen;
  • Specific energy demand: 160–180 kWh/t oxygen;
  • Required time for start-up: 30–60 min;
  • Continuous operation;
  • Less maintenance requirements than pressure swing adsorption;
  • Comparable space requirements as pressure swing adsorption.

Moreover, based on the experimental results, the scalability of the system for higher production rates of up to 100 TPD oxygen shall be analysed.

For this patented technology, ILK Dresden is looking for industrial partners that have interest in financial participation, specific applications, or further developments.

Granted Patent:

DE 10 2021 109 146 A1


Your Request

Further Projects

Image

Innovative small helium liquefier

Liquefaction rates from 10 to 15 l/h

Image

Filter Tests

INDUSTRIAL AND LABORATORY PRECIPITATORS

Image

Low Temperature Tribology

Tribological studies at cryogenic temperatures

Image

Investigation of coolants

Secondary loop refrigerants