Aktuelle Forschungsprojekte

Image Innovativer Helium-Kleinverflüssiger
Image Entwicklung Prüfverfahren und Prüfstand für stationäre Einbau-Kältesätze
Image Initiierung eines Lithiumkreislaufes – Recycling von Lithiumbromidlösungen aus Absorptionskälteanlagen (ReLiA)
Image Prüfung mobiler Leckdetektoren nach DIN EN 14624
Image Aktives Schichtladesystem für Kaltwasserpufferspeicher
Image Entwicklung und Erprobung des Einsatzes von Phasenwechselmaterialien an WEMS (Window Energy Management Systems)
Image Verhalten mehrphasiger kryogener Fluide
Image 3D - Strömungssensor
Image Prüfbad-Haube
Image Praktikum, Diplom, Master, Bachelor
Image For(W)ing - Laufradflügel für Strömungsmaschinen
Image Untersuchung von Kühlsolen
Image Entwicklung hydrolysebeständiger Hotmelt-Klebeverbunde für Prozessluft- und Klimaanwendungen unter Einhaltung hygienischer Anforderungen
Image Prüfverfahren zur dynamischen Alterung von Werkstoffen
Image Leistungsangebot der Lecksuche und Dichtheitsprüfung
Image Numerische und Experimentelle Untersuchung zum Gefährdungspotential durch SARS-CoV-2 in klimatisierten Räumen

Sie befinden sich hier:  Startseite /  Forschung und Entwicklung


Wasserstoff- und Methan-Versuchsfeld am ILK

BMWi

Dr. rer. nat. Andreas Kade

+49-351-4081-5117

Gleichzeitig Drücke bis 1000 bar, Temperaturen bis –253°C

Am ILK Dresden wird ein innovatives Versuchsfeld für kryogene Hochdruckanwendungen mit Wasserstoff (H2), Methan (CH4) und Methan-Wasserstoff-Gemischen betrieben. Dieses ermöglicht die Durchführung verschiedener Dienstleistungen, unter anderem:

  • Bauteiltests und ‑qualifizierungen bei Temperaturen von 20 K (−253 °C) bis Raumtemperatur und gleichzeitig Drücken von Hochvakuum bis 1000 bar (bspw. Dichtungstests und Permeationstests).
  • Untersuchung von Be- und Entladevorgängen an kryogenen oder bei Raumtemperatur betriebenen Wasserstoff- und Methanspeichern (bspw. Adsorberspeicher und kryokomprimierter Wasserstoff).
  • Untersuchung von Katalysatoren für die Ortho-Para-Umwandlung von Wasserstoff.
  • Langzeitauslagerung von Bauteilen und Komponenten in Wasserstoff- oder Methanatmosphäre bei bis zu +200 °C und 160 bar zur Untersuchung von Degradationseffekten (bspw. Wasserstoffversprödung).
  • Neu- und Weiterentwicklung von verschiedenen Wasserstoff- und Methan-Komponenten (bspw. Rückkühlsysteme, Latentwärmespeicher, kryogene Druckspeicher, Wärmeübertrager und kryogene Pumpen).
  • Realisierung von Gesamtsystemen für Wasserstoff und Methan.

Das folgende Diagramm zeigt die Wasserstoff-Speicherdichte in Abhängigkeit von Druck und Temperatur:


Ihre Anfrage zum Projekt