Aktuelle Forschungsprojekte

Image Untersuchungen von Werkstoffen
Image Prüfstand für Ventilatoren nach DIN EN ISO 5801
Image Laseroptische Strömungsmessung
Image Elektrische Komponenten in Kältekreisläufen
Image Apparatur und Verfahren zur Degradationsprüfung
Image GESAMTSYSTEMOPTIMIERUNG VON KÄLTETECHNISCHEN ANLAGENSYSTEMEN FÜR ENERGIEWENDE UND KLIMASCHUTZ
Image Entwicklung und Erprobung des Einsatzes von Phasenwechselmaterialien an WEMS (Window Energy Management Systems)
Image IO-Scan – Integral messendes Optisches Scanverfahren
Image Elektrochemische Dekontamination leitfähiger Oberflächen „EDeKo II“
Image Hybrid- Fluid für CO2-Sublimations-Kältekreislauf
Image IN-SITU-QUELLVERHALTEN VON POLYMEREN IN BRENNBAREN FLUIDEN
Image Aktives Schichtladesystem für Kaltwasserpufferspeicher
Image Prüfverfahren zur dynamischen Alterung von Werkstoffen
Image In-Situ-Untersuchungen zum Quellverhalten von Polymerwerkstoffen unter erhöhten Drücken und Temperaturen
Image PerCO
Image Mikrofluidisches Expansionsventil

Sie befinden sich hier:  Startseite /  Forschung und Entwicklung


Wasserstoff- und Methan-Versuchsfeld am ILK

BMWi

Dr. rer. nat. Andreas Kade

+49-351-4081-5117

Gleichzeitig Drücke bis 1000 bar, Temperaturen bis –253°C

Am ILK Dresden wird ein innovatives Versuchsfeld für kryogene Hochdruckanwendungen mit Wasserstoff (H2), Methan (CH4) und Methan-Wasserstoff-Gemischen betrieben. Dieses ermöglicht die Durchführung verschiedener Dienstleistungen, unter anderem:

  • Bauteiltests und ‑qualifizierungen bei Temperaturen von 20 K (−253 °C) bis Raumtemperatur und gleichzeitig Drücken von Hochvakuum bis 1000 bar (bspw. Dichtungstests und Permeationstests).
  • Untersuchung von Be- und Entladevorgängen an kryogenen oder bei Raumtemperatur betriebenen Wasserstoff- und Methanspeichern (bspw. Adsorberspeicher und kryokomprimierter Wasserstoff).
  • Untersuchung von Katalysatoren für die Ortho-Para-Umwandlung von Wasserstoff.
  • Langzeitauslagerung von Bauteilen und Komponenten in Wasserstoff- oder Methanatmosphäre bei bis zu +200 °C und 160 bar zur Untersuchung von Degradationseffekten (bspw. Wasserstoffversprödung).
  • Neu- und Weiterentwicklung von verschiedenen Wasserstoff- und Methan-Komponenten (bspw. Rückkühlsysteme, Latentwärmespeicher, kryogene Druckspeicher, Wärmeübertrager und kryogene Pumpen).
  • Realisierung von Gesamtsystemen für Wasserstoff und Methan.

Das folgende Diagramm zeigt die Wasserstoff-Speicherdichte in Abhängigkeit von Druck und Temperatur:


Ihre Anfrage zum Projekt

Weitere Projekte - Forschung und Entwicklung

Image

Charakterisierung von Supraleitern in Wasserstoffatmosphäre

Sind Supraleiter wirklich mit Wasserstoff kompatibel?

Image

Korrosionsinhibitor für Ammoniak-Absorptions-Anlagen

Eine Alternative zu Chrom(VI)-Verbindungen

Image

Entwicklung eines kryogenen magnetbasierten Luftzerlegers

Angewandte kryogene Magnetohydrodynamik zur Sauerstoffanreicherung

Image

Sole (Wasser)-Wärmepumpen

Prüfungen nach EN 14511 und 14825