Aktuelle Forschungsprojekte

Image CO2-Trockeneis-Sublimation zur Tieftemperaturkühlung
Image Untersuchung von materialabhängigen Parametern
Image Tieftemperaturtribologie
Image Seminar Lecksuche / Dichtheitsprüfung in der Kältetechnik
Image Vakuum-Flüssigeis-Technologie
Image Hochtemperatur - Korrosionsinhibitoren zur Sicherung der Erweiterung des Anwendungsbereiches Abwärme nutzender Kälteerzeugung
Image Seminar Evakuieren und Trocknen von Kälteanlagen
Image Panel mit indirekter Verdunstungskühlung über Membran
Image Prüfstand für Ventilatoren nach DIN EN ISO 5801
Image Leistungsmessung an Wärmeübertragern
Image Heliumgewinnung aus Erdgas
Image Thermostatische Expansionsventile
Image Thermosyphon mit in situ beschichtetem Verdampfer
Image Entwicklung hydrolysebeständiger Hotmelt-Klebeverbunde für Prozessluft- und Klimaanwendungen unter Einhaltung hygienischer Anforderungen
Image Leistungsangebot Laboranalysen
Image Apparatur und Verfahren zur Degradationsprüfung

Sie befinden sich hier:   /  Startseite


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte

Image

Aktives Schichtladesystem für Kaltwasserpufferspeicher

Temperaturgesteuerte Einschichtung von Kaltwasser mit unterschiedlichem Temperaturniveau

Image

Messung Isolierverpackung

Wie gut ist meine Kühlbox?

Image

Energieeffizienzberatung Kraft-Wärme-Kälte

Wie effizient ist meine Kälteanlage?

Image

Hybrid- Fluid für CO2-Sublimations-Kältekreislauf

Tieftemperaturkühlung mittels CO2-Sublimation