Aktuelle Forschungsprojekte

Image Beladungssensor für Adsorptionsfilter
Image Prüfverfahren für Außenluftfilter
Image Leistungsprüfung an Verflüssigungssätzen
Image Akustik und Schwingungen
Image Verbundvorhaben Öl-Effiziente Kältesysteme – Schmierstoffwahl für Kälteanlagen unter dem Gesichtspunkt der Energieeffizienz
Image Apparatur und Verfahren zur Degradationsprüfung
Image Seminar Evakuieren und Trocknen von Kälteanlagen
Image Tieftemperatur-Materialprüfkammer
Image Rohrgekapselte Latentwärmespeicher
Image Prüfung mobiler Leckdetektoren nach DIN EN 14624
Image Intelligente innovative Stromversorgung für supraleitende Spulen
Image Innovativer magnetbasierter Parawasserstoffkonverter
Image Rauscharme, nichtmetallische Flüssig-Heliumkryostate
Image Primäre Lärmreduktion an Ventilatoren
Image All-In-One Gerät für Gefriertrocknung und Biomaterialherstellung
Image Untersuchung von Kühlsolen

Sie befinden sich hier:   /  Startseite


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte

Image

Prolatent

Innovative Prozesswärmespeicher mit org. PCMs

Image

Primäre Lärmreduktion an Ventilatoren

...mit numerischen und experimentellen Methoden an einem gegenläufigen Axialventilator

Image

Industrie-4.0-Membran-Wärme-und-Stoffübertrager (i-MWÜ4.0)

Vernetzung des gesamten Lebenszyklus einer multifunktionalen RLT-Komponente

Image

3D - Strömungssensor

Anemometer für 3-dimensionale Strömungsmessung