Aktuelle Forschungsprojekte

Image Tieftemperaturtribologie
Image Mikrowärmeübertrager in der Kältetechnik
Image CO2-Trockeneis-Sublimation zur Tieftemperaturkühlung
Image Wasserstoff- und Methan-Versuchsfeld am ILK
Image Entwicklung eines schnellen Rechenverfahrens..
Image Phasenauflösende numerische Simulation von Suspensionen
Image Untersuchungen von Werkstoffen
Image Laseroptische Strömungsmessung
Image Entwicklung und Erprobung des Einsatzes von Phasenwechselmaterialien an WEMS (Window Energy Management Systems)
Image Kälte-Erzeugung und Kältespeicherung
Image Mollier hx-Diagramm
Image Korrosionsinhibitor für Ammoniak-Absorptions-Anlagen
Image Befeuchtungsanlage für hochreine Gase
Image Ultradichte Kryoröhrchen als neuartige Primärpackmittel - Ultrakryo
Image Thermostatische Expansionsventile
Image Reduzierung der Expansionsverluste von Kälteanlagen

Sie befinden sich hier:   /  Startseite


Ressourcenoptimierung und Beschleunigung von Strömungssimulationen mittels künstlicher Intelligenz

03/2023 - 08/2025

Dipl.-Ing. (BA) Heiko Frank

+49-351-4081-5312

in Bearbeitung

TurboKI

Kurzbeschreibung

Strömungssimulationen sind ein etabliertes Werkzeug bei modernen Entwicklungs- und Optimierungsprozessen von z.B. Turbomaschinen und Wärmeübertragern. Jedoch sind genaue Simulationsergebnisse mit klassischen Methoden in der Regel zeitaufwändig und beanspruchen hohe Rechenkapazitäten. Durch den Einsatz von maschinellem Lernen (ML) und künstlicher Intelligenz (KI) sollen Simulationen beschleunigt werden, ohne dabei signifikant an Genauigkeit zu verlieren. Dies könnte die Rechenzeiten deutlich verkürzen, was zu einer erheblichen Einsparung an Energie führt. Solche Effizienzsteigerungen sind angesichts der zunehmenden Bedeutung von Klimaschutz und der Notwendigkeit, den Energieverbrauch zu senken, von großer gesellschaftlicher Relevanz.

Einsatzbereiche

Ressourcenoptimierung und Beschleunigung klassischer Simulationsmethoden / Simulationssoftware, besonders in KMUs mit begrenzten Rechenkapazitäten.

Zielstellung

Das Ziel des Projektes ist die Weiterentwicklung des institutseigenen CFD-Programms (Strömungslösers) TurboSim. Perspektivisch soll TurboSim als Teil des Optimierungs- und Auslegungsprozesses von z.B. Turbomaschinen oder Wärmeübertragern zum Einsatz kommen. Innerhalb des Auslegungsprozesses ist eine Vielzahl von Strömungssimulationen erforderlich, um wichtige integrale Zielkenngrößen der Optimierung zu ermitteln, wie z.B. der Wirkungsgrad einer Strömungsmaschine. Neben den grundlegenden Anforderungen (wie Genauigkeit, Robustheit und Konvergenz) ist es daher unabdingbar, dass das CFD-Verfahren ressourcenschonend arbeitet. Das vorgeschlagene Projekt beschäftigt sich daher mit der Beschleunigung und Effizienzsteigerung des Strömungslösers TurboSim mittels klassischer Methoden und Methoden des Maschinellen Lernens (ML) bzw. der Künstlichen Intelligenz (KI).

TurboSim-Simulationen mit hoher Gitterauflösung sind aktuell numerisch sehr teuer, liefern aber genaue Resultate. Rechnungen auf groben Gittern sind hingegen sehr schnell und liefern qualitativ gute Ergebnisse, jedoch sind potentielle Abweichungen bei den integralen Zielgrößen der Rechnung zu finden. Die Grundidee besteht nun darin, über eine Vielzahl von hochaufgelösten Simulationen systematische Fehler in Bezug auf die integralen Parameter (z.B. Totaldruckerhöhung, statischer Druckaufbau, Wellenleistung, Wirkungsgrad) bei groben Simulationen zu erkennen und mit Hilfe von ML-/ KI-Methoden zu korrigieren. Im Erfolgsfall würde dadurch die benötigte Rechenzeit drastisch reduziert und der Einsatz von CFD für die geometrische Optimierung von durch- und umströmten Bauteilen ermöglicht.

 


Ihre Anfrage zum Projekt

Weitere Projekte

Image

Apparatur und Verfahren zur Degradationsprüfung

Auslegung von Prüfverfahren für biologisch abbaubare Medizinprodukte

Image

All-In-One Gerät für Gefriertrocknung und Biomaterialherstellung

mit automatisierter Einfrier- und Sterilisationsoption

Image

Chemische Wasserbinder/Enteiser für Kältekreisläufe - CheWa

Energetisch und Bauteiloptimierte Kältekreisläufe kleiner Leistung

Image

Untersuchungen nach DIN EN ISO 14903

Diese Prüfungen nach DIN EN ISO 14903 sind am ILK Dresden möglich