Current research projects

Image Investigation of coolants
Image Multifunctional electronic modules for cryogenic applications
Image Ice Slurry Generation
Image Characterisation of Superconductors in Hydrogen Atmosphere
Image Low Temperature Tribology
Image Innovative small helium liquefier
Image Verification of storage suitability of cryo tubes
Image Pulse-Tube-Refrigerator with sealed compressor
Image Preformance measurements of heat exchangers
Image Testzentrum PLWP at ILK Dresden
Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr
Image Certifiable connection types in cryogenics
Image Innovative cryogenic cooling system for the recondensation / liquefaction of technical gases up to 77 K
Image Software for technical building equipment
Image Service offer for Leak Detection and Tightness Test
Image Panel with indirect evaporative cooling via membrane

You are here:   /  Home


Hydrogen and methane testing field at the ILK

BMWi

Dr. Andreas Kade

+49-351-4081-5117

Simultaneously pressures up to 1,000 bar, temperatures down to –253°C

ILK Dresden operates an innovative testing ground for cryogenic high-pressure applications with hydrogen (H2), methane (CH4), and methane–hydrogen mixtures. With this, different services can be offered, among other things:

  • Test and qualification of components at temperatures ranging from 20 K (−253 °C) to room temperature and pressures ranging from high vacuum to 1000 bar (e.g. test of sealings, permeation tests).
  • Investigation of charge and discharge processes at cryogenic or room-temperature-operated storage systems for hydrogen and methane (e.g. adsorber storage systems, cryo-compressed hydrogen).
  • Investigation of catalyst materials for the ortho–para conversion of hydrogen.
  • Long-time thermal charging of components and materials in hydrogen or methane atmosphere at up to +200 °C and up to 160 bar for investigating degradation effects (e.g. hydrogen embrittlement).
  • Development of different hydrogen and methane components (e.g. recooling systems, latent-heat storage systems, cryogenic pressure storage systems, heat exchangers, cryogenic pumps).
  • Realisation of complete-system solutions for hydrogen and methane.

The following diagram depicts the specific storage density that can be achieved depending on temperature and pressure:


Your Request

Further Projects

Image

Electrical components in refrigeration circuits

High voltage tests under real conditions

Image

Influenced melting point of water by magnetic field

Controlled sub-cooling of products in freezing processes

Image

Investigation of materials

Investigations regarding the compatibility of materials with refrigerants, oils and heat transfer fluids

Image